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a r t i c l e i n f o
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a b s t r a c t

A three-dimensional finite element dynamic simulation platform of the ground source heat pump system (GSHPS)
is established. According to the outlet temperature of ground heat exchangers (GHEs) required by the code in
summer and winter, the calculated minimum buried depth of GHEs meeting the requirements is 60 m, when the
number of borehole is 9. By using the established platform, the annual operation performance and cost of the
GSHPS under different buried pipe depths are studied. The results show that the deeper the buried depth of GHEs
is, the better the heat exchange effect of GHEs is. Compared with the GHEs with 60 m buried depth, when the
buried depth of GHEs is 65 m, 70 m, 75 m and 80 m, the average coefficient of performance (COP) of the unit
increases by 4.1%, 6.3%, 7.7% and 8.2% in cooling period and 1.0%, 1.6%, 1.8% and 1.9% in heating period,
respectively. Considering the performance and initial investment of the GHSPS comprehensively, the optimal
buried depth of GHEs is 60 m. However, considering the performance the system and the total cost of the system
running for 20 years comprehensively, the optimal buried depth of GHEs is 70 m.

1. Introduction

In recent years, the energy consumption of heating and air condi-
tioning in buildings has increased sharply, accounting for about 40% of
the total social energy consumption [1]. The ground source heat pump
system (GSHPS) has been widely used in the world because of its high-
efficiency and environmental-friendly characteristics [2–4].

As one of the crucial parts of the GSHPS, ground heat exchangers
(GHEs) are mostly responsible for the performance and cost of the whole
system [5,6]. The primary design parameter for GHEs is their buried
depth [7], as it determines the possible heat extraction from the soil.
The deeper the buried depth of GHEs is, the higher the possible heat
extraction is. But the increase of buried pipe depth will also lead to
the increase of drilling cost. Due to these limitations, on the basis of
satisfying the total thermal energy demand of the GSHPS, the buried
depth of GHEs should be as small as possible [8].

For the experimental research on the buried depth of GHEs, Li et al.
[9] set up a set of experiments to assess the influence of buried pipe
depth on the performance of the GSHPS. The results showed that the
maximum energy efficiency coefficient of GHEs with 60 m buried depth
is 0.15 higher than that of GHEs with 40 m buried depth in summer.
Esen and Turgut [10] carried out experimental research on the GHEs un-

∗ Corresponding author.
E-mail address: hanzongwei_neu@163.com (Z. Han).

der three different buried depths. They found that the larger the buried
depth of GHEs is, the higher the coefficient of performance (COP) of
the ground source heat pump (GSHP) unit is. Compared with the GHEs
with 30 m depth, the average COP of the unit increased by 0.44 and
1.10 respectively, when the buried depth of GHEs is 60 m and 90 m.
Chang and Kim [11] used the in-situ thermal response test to identify
soil thermal conductivity under different buried pipe depths. The results
showed that the soil thermal conductivity of the ground heat exchanger
with 150 m buried depth was 34.1% higher than that of the ground
heat exchanger with 100 m buried depth. Zhai et al. [12] designed and
installed a minitype GSHPS in the green energy building of Shanghai
Jiao Tong University. In this system, the buried depth of GHEs is 50 m,
60 m and 80 m respectively. They found that in typical heating mode,
compared with the GHEs with 80 m buried depth, the average outlet
temperature of GHEs decreased by 0.9 °C and 0.6 °C respectively, when
the buried depth of GHEs is 50 m and 60 m.

Studies on the influence of buried pipe depth on the performance of
the GSHPS are mostly based on the numerical simulation. Wang et al.
[13] developed a comprehensive simulation model, and simulated the
heat transfer process of GHEs with different buried depths by using
Computational Fluid Dynamic technique. They found that the buried
depth of GHEs must be larger than 40 m to guarantee the sustainabil-
ity for heating, and it should be not less 70 m to guarantee a higher

https://doi.org/10.1016/j.enbenv.2020.09.003
Available online 11 September 2020
2666-1233/Copyright © 2020 Southwest Jiatong University. Publishing services by Elsevier B.V. on behalf of KeAi Communication Co. Ltd. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Nomenclature

Symbols

𝜆s thermal conductivity of soil [W/(m•K)]
𝜆b thermal conductivity of backfill material [W/(m•K)]
𝜌s density of soil [kg/m3]
𝜌b density of backfill material [kg/m3]
cs specific heat capacity of soil [J/(kg•K)]
cb specific heat capacity of backfill material [J/(kg•K)]
T temperature [°C]
t time [s]
qh heating capacity of unit [kW]
qc cooling capacity of unit [kW]
qhd rated heating capacity of unit [kW]
qcd rated cooling capacity of unit [kW]
ph power consumption under heating condition [kW]
pc power consumption under cooling condition [kW]
phd rated power consumption under heating condition [kW]
pcd rated power consumption under cooling condition [kW]
Tout, h outlet temperature under heating condition [°C]
Tout, c outlet temperature under cooling condition [°C]
Tin, h inlet temperature under heating condition [°C]
Tin, c inlet temperature under cooling condition [°C]
a1 fitting parameter [°C−1]
b1 fitting parameter
c1 fitting parameter [°C−1]
d1 fitting parameter
a2 fitting parameter [°C−1]
b2 fitting parameter
c2 fitting parameter [°C−1]
d2 fitting parameter
𝜌′ fluid density in pipes [kg/m3]
c′ specific heat capacity of fluid in pipes [J/(kg•K)]
S total cross-sectional area of buried pipes [m2]
v fluid velocity in pipes [m/s]
md cost of drilling [RMB]
mb cost of backfilling material [RMB]
mg cost of single U-tube GHEs [RMB]
l total length of GHEs [m]
ud cost per unit pipe length of drilling [RMB/m]
ub cost per unit pipe length of backfilling material

[RMB/m]
ug cost per unit pipe length of single U-tube GHEs

[RMB/m]
mi total cost of buried pipes [RMB]
me electricity charge of system running for 20 years [RMB]
n power consumption of system running for 1 year [kWh]
ue electricity charge per kilowatt hour [RMB/kWh]
mr total cost of system running for 20 years [RMB]

Superscripts

i previous moment
i + 1 next moment

Acronyms

GSHPS Ground Source Heat Pump System
GSHP Ground Source Heat Pump
GHEs Ground Heat Exchangers
COP Coefficient of Performance

long-term energy efficiency of the system. Han et al. [14] established a
dynamic simulation model of the GSHPS, designed GHEs according to
the ASHRAE method, and studied the influence of buried pipe depth on
the design error of the ASHRAE method. The design error is the ratio of
the difference between the actual outlet temperature and the set outlet

temperature to the set outlet temperature. It was concluded that when
the buried depth of GHEs increased from 60 m to 80 m, the design error
of ASHRAE method increased in summer and decreased in winter. San-
dler et al. [15] used a steady-state numerical model to assess the overall
U-pipe performance. The results indicated that when the buried depth
of the ground heat exchanger increased from 30 m to 100 m, the abso-
lute temperature difference between the inlet and outlet of the ground
heat exchanger increased by 36%. Casasso and Sethi [16] ran a set of
heat transport simulations to evaluate the impact of different parame-
ters on the operation performance of the GSHPS. The results proved that
the buried depth of the ground heat exchanger was the most important
parameter in the design of the GSHPS. When the buried depth of the
ground heat exchanger increased from 50 m to 75 m, the minimum inlet
temperature of the ground heat exchanger increased by 4.15 °C during
heating period. Chen et al. [17] developed a three-dimensional unsteady
numerical model of the ground heat exchanger by using the finite vol-
ume method, and simulated the heat transfer flux of the ground heat ex-
changer under different buried depths. They found that when the inlet
flow rate of the ground heat exchanger was equal, the heat transfer flux
per unit borehole depth of the ground heat exchanger with 50 m buried
depth was 23.15 W/m higher than that of the ground heat exchanger
with 100 m buried depth. Li et al. [18] established a three-dimensional
equivalent rectangular numerical model to evaluate the fluid tempera-
ture variation along the pipe. The results showed that compared with
the ground heat exchanger with 80 m buried depth, the temperature
difference between the inlet and outlet of the ground heat exchanger
increased by 17% and 27% respectively, when the buried depth of the
ground heat exchanger is 120 m and 200 m.

The buried depth of GHEs not only affects the performance of the
GSHPS, but also affects the cost of the GSHPS. Esen et al. [19] stud-
ied the performance and cost of the GSHPS under different buried pipe
depths by experimental method. According to the experimental results,
the performance of the GSHPS can reach the best when the buried depth
of the ground heat exchanger is 90 m. When considering the cost of dig-
ging, the optimum buried depth of the ground heat exchanger is 60 m.
Chen et al. [20] presented a numerical heat transfer model for verti-
cal U-tube GHEs, and simulated the heat transfer performance of GHEs
with different buried depths (from 60 m to 100 m). The results demon-
strated that the heat transfer flux per unit pipe length of GHEs is the
same when the buried pipe depth is 60 m and 70 m. Compared with
GHEs under other buried depths, the heat transfer flux per unit pipe
length of GHEs with the buried depth of 60 m and 70 m is the largest.
When the buried depth of GHEs is 70 m, the total length of GHEs is the
shortest, and the initial investment of the system is the lowest. Zhou
et al. [21] established a detailed numerical model to analyze the ther-
mal performance and economic efficiency of the GSHPS under different
buried pipe depths. The results showed that the optimal buried depth of
the ground heat exchanger was 40 m when considering only the ther-
mal performance of the GSHPS. When the unit price per meter of the
borehole drilling was ¥70/m, the optimal buried depth of the ground
heat exchanger is 60 m, but when the unit price per meter of the bore-
hole drilling was ¥150/m, the optimal buried depth of the ground heat
exchanger was 40 m.

To summarize, the buried depth of the ground heat exchanger has a
great impact on the GSHPS. However, the references [9–18] only study
the influence of buried depth of the ground heat exchanger on the per-
formance of the GSHPS, but do not study the influence of buried depth
of the ground heat exchanger on the cost of the GSHPS. In addition,
the studies on buried pipe depth in references [9,10,12,13] are based
on the constant load condition, and the studies on buried pipe depth in
references [11,15–18] are based on the single borehole model.

Currently, there are few studies that not only consider the influence
of buried pipe depth on the performance of the GSHPS, but also consider
the influence of buried pipe depth on the cost of the GSHPS. Although
references [19–21] study the influence of buried pipe depth on the per-
formance and cost of the system, the studies on buried pipe depth in
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Table 1

Parameters of each part of the model.

Outer diameter of buried pipes Inner diameter of buried pipes Center distance of pipe legs Drilling diameter Borehole spacing

32mm 26mm 70mm 150mm 4.5m

references [19,20] are also based on the constant load condition, and
the studies on buried pipe depth in references [19,21] are also based on
the single borehole model.

In the actual operation process of the GSHPS, the load in the building
can not be the same every day, that is to say, the building load can not
be constant. On account of the defects of above research and in order
to be more close to the actual working process of the GSHPS, this paper
establishes a three-dimensional finite element dynamic simulation plat-
form of the GSHPS. There are 9 boreholes in this simulation platform,
and the simulation platform realizes that the inlet and outlet temper-
ature of GHEs changes with the change of the daily building load. By
using this platform, the influence of buried depth of GHEs on the per-
formance of the GSHPS is studied, the cost of the GSHPS under different
buried pipe depths is compared, and the optimum buried depth of GHEs
is obtained, which will provide a reference for the actual engineering
design and operation of the GSHPS.

2. Establishment and validation of the simulation platform

2.1. Physical model

To analyze the influence of the buried depth of GHEs on the GSHPS,
the three-dimensional pipe group physical model with different buried
depths is established. There are 9 boreholes in the model, and the layout
of buried pipes is arranged in square. According to the difference of
buried depth, the buried depth of GHEs can be divided into the shallow
buried (less than 30 m), medium buried (30~100 m) and deep buried
(more than 100 m). In the research of this paper, the selected buried
depth of GHEs is the medium buried. The parameters of each part of the
model are shown in Table 1. In order to improve the calculation speed,
the areas far away from the center of boreholes with relatively smaller
temperature gradient change are divided into rough meshes. To ensure
the accuracy of calculation, the U-tube group with larger temperature
gradient change and its surrounding areas are divided into fine grids.
The grid distribution of the model is shown in Fig. 1.

2.2. Mathematical model

In order to reduce the difficulty of solution, the following assump-
tions are made in the process of establishing the mathematical model:

(1) The soil is homogeneous and isotropic;
(2) Neglecting the flow of water in soil;
(3) The thermal contact resistance between buried pipes and backfill

material and that between backfill material and soil are ignored;
(4) The thermophysical properties of soil, buried pipes and circulating

fluid in pipes are independent of temperature.

The mass conservation equation, momentum conservation equation,
energy conservation equation and Navier-Stokes (N-S) equation are used
to establish the mathematical model of the heat transfer process of cir-
culating fluid in pipes. The heat conduction process of soil and backfill
material can be expressed by the three-dimensional unsteady heat con-
duction differential equation [22,23]:

𝜌s𝑐s
𝜕𝑇

𝜕𝑡
= 𝜕
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)
(2)

where𝜌 represents the density;c represents the specific heat capacity;𝜆
represents the thermal conductivity; the subscripts s and b represent soil
and backfill material respectively;T is temperature; t is time.

In the GSHPS, the outlet temperature of GHEs is equal to the inlet
temperature of the unit at the heat source side. When the rated inlet
temperature of the unit at the heat source side is 24 °C under cooling
condition, and the rated inlet temperature of the unit at the heat source
side is 0 °C under heating condition, the performance of the unit under
the variable load condition can be obtained from Eq. (3) to Eq. (6).

𝑞ℎ = 𝑞ℎ𝑑 ⋅ (𝑎1𝑇𝑜𝑢𝑡,ℎ + 𝑏1) (3)

𝑝ℎ = 𝑝ℎ𝑑 ⋅ (𝑐1𝑇𝑜𝑢𝑡,ℎ + 𝑑1) (4)

𝑞𝑐 = 𝑞𝑐𝑑 ⋅ (𝑎2𝑇𝑜𝑢𝑡,𝑐 + 𝑏2) (5)

𝑝𝑐 = 𝑝𝑐𝑑 ⋅
(
𝑐2𝑇𝑜𝑢𝑡,𝑐 + 𝑑2

)
(6)

where qh represents heating capacity of the unit; qc represents cooling
capacity of the unit; qhd represents rated heating capacity of the unit;qcd
represents rated cooling capacity of the unit;ph and pc are power con-
sumption under heating and cooling conditions respectively; phd and pcd
are rated power consumption under heating and cooling conditions re-
spectively; Tout, h and Tout, c are outlet temperature of GHEs under heat-
ing and cooling conditions respectively; a1, b1, c1, d1, a2, b2, c2 and d2
are fitting parameters.

Under cooling and heating conditions, the inlet temperature of GHEs
is calculated by Eqs. (7) and (8), respectively:

𝑇
𝑖+1
𝑖𝑛,𝑐

= 𝑇
𝑖

𝑜𝑢𝑡,𝑐
+

𝑞
𝑖

𝑐
+ 𝑝

𝑖

𝑐
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(7)

𝑇
𝑖+1
𝑖𝑛,ℎ

= 𝑇
𝑖

𝑜𝑢𝑡,ℎ
−

𝑞
𝑖

ℎ
− 𝑝

𝑖

ℎ

𝑐′ ⋅ 𝜌′ ⋅ 𝑆 ⋅ 𝑣
(8)

where i represents the previous moment, i + 1 represents the next mo-
ment; Tin, c and Tin, h are inlet temperature of GHEs under cooling and
heating conditions respectively; c′ represents specific heat capacity of
fluid in pipes; 𝜌′ is fluid density in pipes; S is total cross-sectional area
of buried pipes; v is fluid velocity in pipes.

The circulating fluid in pipes is water. Some parameter values used
in the simulation process are shown in Table 2.

The top surface of the heat exchange area is set as the convective
boundary, which considers the convective heat transfer between soil and
air. Bottom surface and other far boundaries of the heat exchange area
are set to a constant temperature equal to the initial soil temperature Ti.

The outlet boundary of GHEs is defined as free flow, and the ini-
tial outlet temperature of GHEs is set to Tiout. The inlet temperature of
GHEs is determined by the outlet temperature of GHEs and the heat
intake/emission of the unit calculated at the previous moment.

The pipe walls of GHEs are set as the fixed walls without sliding.
The heat transfer between GHEs and backfill material, and that between
backfill material and soil are both coupled heat transfer.

The above model is solved by the finite element software COMSOL
Multiphysics. To improve the efficiency of calculation, the time step of
simulation is set to 1 day.
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Fig. 1. Grid distribution of the pipe group model.

Table 2

Some parameter values used in the simulation process.

Name of the parameters Values Name of the parameters Values

Thermal conductivity of soil𝜆
s

1.83 W/(m•K) Rated power consumption under heating conditionp
hd

15.5kW
Thermal conductivity of backfill material𝜆

b
2.10 W/(m•K) Rated power consumption under cooling conditionp

cd
11.7kW

Thermal conductivity of water𝜆
l

0.60 W/(m•K) Fitting parametera1 0.0672 °C−1

Thermal conductivity of buried pipes material𝜆g 0.42 W/(m•K) Fitting parameterb1 1
Density of soil𝜌

s
1875 kg/m3 Fitting parameterc1 0.0473 °C−1

Density of backfill material𝜌b 1860 kg/m3 Fitting parameterd1 1
Density of water𝜌

l
998.2 kg/m3 Fitting parametera2 −0.0029 °C−1

Density of buried pipes material𝜌g 940 kg/m3 Fitting parameterb2 1.1
Specific heat capacity of soilcs 2100 J/(kg•K) Fitting parameterc2 0.015 °C−1

Specific heat capacity of backfill materialcb 840 J/(kg•K) Fitting parameterd2 0.64
Specific heat capacity of watercl 4182 J/(kg•K) Fluid velocity in pipesv 0.37 m/s
Specific heat capacity of buried pipes materialcg 2300 J/(kg•K) Initial soil temperatureT

i
12 °C

Rated heating capacity of unitq
hd

53kW Initial outlet temperatureT
iout

12 °C
Rated cooling capacity of unitq

cd
60kW

2.3. Model validation

Due to the lack of experimental research under the variable load
condition, the experimental data under the constant load condition in
reference [12] are used to verify the accuracy of the heat transfer process
of the simulation model under the variable load condition in this paper.
Because the heat transfer mechanism between GHEs and soil is the same
whether under the variable load condition or constant load condition,
it is feasible to verify the accuracy of the heat transfer process of the
simulation model under the variable load condition by using the exper-
imental data under the constant load condition. At the same time, in
order to verify the accuracy of the simulation model under the variable
load condition, the simulation data under the variable load condition in
literature [24] are selected. The validation results are shown in Fig. 2. In

Fig. 2(a), the outlet temperature of GHEs in this paper is compared with
that in reference [12]. It can be seen that simulation results in this pa-
per are in good agreement with experimental results in reference [12],
and the maximum relative error (the ratio of the difference between the
experimental value and the simulated value to the experimental value)
is 3.4%. Fig. 2(b) compares the soil temperature in this paper and that
in literature [24]. It can be seen that the variation trend of the simula-
tion results in this paper is consistent with that in literature [24], and
the maximum relative error is 2.8%. In addition, the grid independence
of the simulation model is verified. In this paper, the total number of
grid cell in the model is 2.38 million. The total number of grid cell in
the model is reduced to 2.00 million or increased to 2.80 million to ver-
ify the independence of the grid respectively. In Fig. 2, when the total
number of grid cell decreases or increases, the simulation results hardly
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Fig. 2. Verification of simulation model accuracy and grid independence.

Fig. 3. Change curve of building cooling and heating loads in Beijing area.

change. In conclusion, the simulation model established in this paper
has higher accuracy to simulate the heat transfer process of GHEs.

3. Results and discussion

This paper takes an office building in Beijing as the research object.
Beijing (40°N, 116°E) belongs to temperate monsoon climate, with high
temperature and rainy in summer and cold and dry in winter. The office
building has only one floor, with a floor height of 4.2 m. Its total build-
ing area is 207m2, including 183m2 of air conditioning area. The main
rooms in the building are used for office and meeting. In cooling period,
the indoor air conditioning design temperature of the building is 26 °C,
and in heating period, the indoor air conditioning design temperature of
the building is 20 °C. The cooling and heating loads of the building are
calculated by DeST software, as shown in Fig. 3. In Fig. 3, the first day
is March 16 of the first year. The cooling period of the first year is from
May 15 of the first year (61rd day) to September 15 of the first year
(184rd day), and the heating period of the first year is from November
15 of the first year (245rd day) to March 15 of the second year (365rd
day). In cooling period, the maximum cooling load is 42.11 kW, and

Fig. 4. flowchart for calculating the minimum buried depth of GHEs.

the cumulative cooling load is 67,344.24 kWh. In heating period, the
maximum heating load is 40.20 kW, and the cumulative heating load is
46,824.24 kWh.

3.1. Design of the minimum buried depth of GHEs

In cooling period, if the outlet temperature of GHEs is higher than
33 °C, the operation condition of the GSHPS will be equivalent to that of
the conventional cooling tower, which can not fully reflect the energy
saving property of the GSHPS. In heating period, if the circulating fluid
temperature entering the GSHP unit at the heat source side is too low,
freezing may occur in the GSHP unit, thus reducing the energy efficiency
ratio of the system. Therefore, the Chinese national standard “Engineer-
ing technical code for the ground source heat pump system (GB50336–
2009)” clearly stipulates the outlet temperature of GHEs should be less
than or equal to 33 °C in summer, and that of GHEs without adding an-
tifreeze should be higher than 4 °C in winter. In this paper, the maximum
outlet temperature Tout, max is less than or equal to 33 °C in summer and
the minimum outlet temperature Tout, min is more than 4 °C in winter as
the limiting conditions, the minimum buried depth of GHEs that meets
the requirements of the code is calculated, as shown in Fig. 4. When the
number of borehole is 9, the calculated minimum buried depth of GHEs
is 60 m. Taking 5 m as the increase range of minimum buried depth
of GHEs, five groups of buried pipe depth are simulated to analyze the
influence of the buried depth of GHEs on the GSHPS.
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Fig. 5. Change curve of soil temperature under different buried pipe depths.

Table 3

Maximum (minimum) and average values of soil temperature under different buried pipe depths.

Buried depth Maximum value in cooling period Average value in cooling period Minimum value in heating period Average value in heating period

60m 21.30 °C 17.70 °C 6.49 °C 9.52 °C
65m 18.52 °C 16.01 °C 8.17 °C 10.26 °C
70m 16.92 °C 15.03 °C 9.16 °C 10.69 °C
75m 16.10 °C 14.53 °C 9.65 °C 10.91 °C
80m 15.90 °C 14.40 °C 9.76 °C 10.97 °C

3.2. Soil temperature field

To analyze the influence of buried depth of GHEs on the soil temper-
ature field, the soil temperature under different buried pipe depths is
simulated, as shown in Fig. 5. In the figure, the deeper the buried depth
of GHEs is, the lower the soil temperature is in cooling period, and the
higher the soil temperature is in heating period. This is because with
the increase of buried depth of GHEs, the heat exchange area between
GHEs and soil will increase correspondingly, which is conducive to en-
hancing the heat exchange effect of GHEs and reducing the energy loss
of soil. Table 3 shows the maximum (minimum) and average values of
soil temperature under different buried pipe depths. Compared with the
GHEs with 60 m depth, when the buried depth of GHEs is 65 m, 70 m,
75 m and 80 m, the maximum soil temperature is reduced by 2.78 °C,
4.38 °C, 5.20 °C and 5.40 °C in cooling period, the minimum soil tem-
perature is increased by 1.68 °C, 2.67 °C, 3.16 °C and 3.27 °C in heating
period, and the average soil temperature is reduced by 1.69 °C, 2.67 °C,
3.17 °C and 3.30 °C in cooling period and increased by 0.74 °C, 1.17 °C,
1.39 °C and 1.45 °C in heating period, respectively. It can be seen that
with the increase of the buried pipe depth, the change range of the soil
temperature will also increase, but the change rate of the soil temper-
ature (the ratio of the change range of soil temperature to the increase
range of the buried pipe depth) will decrease.

To understand the change of soil temperature in the long-term op-
eration process of the GSHPS, the soil temperature is simulated for 20
years by taking the pipe group model with 60 m buried depth as an ex-
ample, as shown in Fig. 6. Fig. 7 shows the change of average soil tem-
perature in cooling and heating period of each year. It can be seen from
Fig. 7 that with the increase of the operation time of the system, the aver-
age soil temperature gradually decreases, and finally it almost remains
the same. In cooling period, the average soil temperature of 20 years
is 17.411 °C, the maximum average soil temperature is 17.700 °C, and
the minimum average soil temperature is 17.394 °C. Compared with the
average soil temperature of 20 years, the maximum average soil temper-
ature increases by 0.289 °C, and the minimum average soil temperature
decreases by 0.017 °C. In heating period, the average soil temperature of

Fig. 6. Change curve of soil temperature in the operation process of the GSHPS
for 20 years.

20 years is 9.450 °C, the maximum average soil temperature is 9.520 °C,
and the minimum average soil temperature is 9.445 °C. Compared with
the average soil temperature of 20 years, the maximum average soil
temperature increases by 0.070 °C, and the minimum average soil tem-
perature decreases by 0.005 °C. It can be seen that in the continuous
operation process of the system for 20 years, the change of soil temper-
ature is relatively small.

3.3. Operation performance of the GSHP unit

Fig. 8 shows the change of inlet and outlet temperature of GHEs with
different buried depths. In the figure, with the increase of buried depth
of GHEs, the inlet and outlet temperature will decrease in cooling period
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Table 4

Maximum (minimum) and average values of outlet temperature of GHEs with different buried depths.

Buried depth Maximum value in cooling period Average value in cooling period Minimum value in heating period Average value in heating period

55m 27.18 °C 21.03 °C 1.19 °C 7.39 °C
60m 23.12 °C 18.62 °C 4.17 °C 8.65 °C
65m 19.61 °C 16.54 °C 6.69 °C 9.72 °C
70m 17.79 °C 15.45 °C 7.95 °C 10.26 °C
75m 16.68 °C 14.80 °C 8.77 °C 10.60 °C
80m 16.33 °C 14.59 °C 9.05 °C 10.72 °C

Table 5

Minimum and average COP values of the unit under different buried pipe depths.

Buried depth Minimum value in cooling period Average value in cooling period Minimum value in heating period Average value in heating period

60m 5.37 5.84 3.66 3.83
65m 5.73 6.08 3.77 3.87
70m 5.93 6.21 3.81 3.89
75m 6.06 6.29 3.84 3.90
80m 6.10 6.32 3.85 3.903

Fig. 7. Change curve of average soil temperature in cooling and heating period
of each year.

and increase in heating period. Table 4 shows the maximum (minimum)
and average values of outlet temperature of GHEs under different buried
pipe depths. In Table 4, the minimum outlet temperature of GHEs with
55 m buried depth in heating period is 1.19 °C, which does not meet
the requirements of the code, so the minimum buried depth of GHEs
is determined to be 60 m. Compared with the GHEs with 60 m depth,
when the buried depth of GHEs is 65 m, 70 m, 75 m and 80 m, the
maximum outlet temperature decreases by 3.51 °C, 5.33 °C, 6.44 °C and
6.79 °C in cooling period, the minimum outlet temperature increases by
2.52 °C, 3.78 °C, 4.60 °C and 4.88 °C in heating period, and the average
outlet temperature decreases by 2.08 °C, 3.17 °C, 3.82 °C and 4.03 °C in
cooling period and increases by 1.07 °C, 1.61 °C, 1.95 °C and 2.07 °C in
heating period, respectively. As mentioned above, the deeper the buried
depth of GHEs is, the larger the contact area between GHEs and soil is,
and the better the heat exchange effect of GHEs is.

Fig. 9 shows the COP variation of the GSHP unit under different
buried pipe depths. In the figure, with the increase of buried pipe depth,
the COP of the unit will also increase. Table 5 shows the minimum and
average COP values of the unit under different buried pipe depths. Com-
pared with the GHEs with 60 m depth, when the buried depth of GHEs
is 65 m, 70 m, 75 m and 80 m, the minimum COP increases by 6.7%,
10.4%, 12.8% and 13.6% in cooling period and 3.0%, 4.1%, 4.9% and
5.2% in heating period, and the average COP increases by 4.1%, 6.3%,

7.7% and 8.2% in cooling period and 1.0%, 1.6%, 1.8% and 1.9% in
heating period, respectively.

3.4. Cost of the GSHPS

Eqs. (9)–(11) are used to calculate the cost of drilling, backfilling
material and single U-tube GHEs respectively. The calculation of the to-
tal cost of buried pipes is shown in Eq. (12). According to the relevant
literature [20,25], the cost per unit pipe length of drilling, backfilling
material and single U-tube GHEs is ¥73/m, ¥10/m and ¥15/m respec-
tively. The total cost of buried pipes (initial investment of the GHSPS)
under different buried depths is shown in Table 6. In Table 6, with the
increase of the buried depth, the total cost of buried pipes will also in-
crease. Compared with the GHEs with 60 m depth, when the buried
depth of GHEs is 65 m, 70 m, 75 m and 80 m, the total cost of buried
pipes increases by 8.3%, 16.7%, 25.0% and 33.3%, respectively. The
GHEs with 60 m buried depth not only meet the outlet temperature re-
quired by the code, but also make the total cost of buried pipes reach
the lowest. Therefore, considering the performance and the initial in-
vestment of the system comprehensively, the optimal buried depth of
GHEs is 60 m.

𝑚d = 𝑙 ⋅ 𝑢d (9)

𝑚b = 𝑙 ⋅ 𝑢b (10)

𝑚g = 𝑙 ⋅ 𝑢g (11)

𝑚i = 𝑚d + 𝑚b + 𝑚g (12)

where md, mb and mg represent the cost of drilling, backfilling mate-
rial and single U-tube GHEs respectively;l represents the total length of
GHEs;ud, ub and ug represent the cost per unit pipe length of drilling,
backfilling material and single U-tube GHEs respectively; mi represents
the total cost of buried pipes.

As mentioned above, during the continuous operation of the GSHPS
for 20 years, the change of soil temperature is quite small. It can be
approximately considered that the heat exchange effect between soil and
GHEs is the same every year, and the power consumption of the GSHPS
is also the same every year. Table 7 shows the power consumption of
the system running for 1 year under different buried pipe depths. The
calculation of electricity charge of the system running for 20 years is
shown in Eq. (13), and the calculation of total cost of the system running
for 20 years is shown in Eq. (14).The electricity charge per kilowatt hour
for the office building in Beijing is ¥0.82/kWh [26]. The total cost of the
system running for 20 years under different buried pipe depths is shown
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Fig. 8. Change curve of inlet and outlet temperature of GHEs with different buried depths.

Fig. 9. COP change curve of the unit under different buried pipe depths.
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Table 6

Total cost of buried pipes under different buried depths.

Buried depth Total length of GHEs Cost of drilling [RMB] Cost of backfilling material [RMB] Cost of Single U-tube GHEs [RMB] Total cost of buried pipes [RMB]

60m 540m 39,420 5400 8100 52,920
65m 585m 42,705 5850 8775 57,330
70m 630m 45,990 6300 9450 61,740
75m 675m 49,275 6750 10,125 66,150
80m 720m 52,560 7200 10,800 70,560

Table 7

Power consumption of the system running for 1 year under different buried pipe depths.

Buried depth 60m 65m 70m 75m 80m

Power consumption [kWh] 23,991.63 23,333.27 23,002.14 22,804.72 22,741.85

Table 8

Total cost of the system running for 20 years under different buried pipe depths.

Buried depth Total cost of buried pipes [RMB] Electricity charge of the system running for 20 years [RMB] Total cost of the system running for 20 years [RMB]

60m 52,920 393,462.73 446,382.73
65m 57,330 382,665.63 439,995.63
70m 61,740 377,235.10 438,975.10
75m 66,150 373,997.41 440,147.41
80m 70,560 372,996.34 443,556.34

in Table 8. In Table 8, the electricity charge decreases with the increase
of buried depth of GHEs. When the buried depth of GHEs is 70 m, the
total cost of the system running for 20 years is the lowest, and when
the buried depth of GHEs is 60 m, the total cost of the system running
for 20 years is the highest. Compared with the GHEs with 70 m depth,
when the buried depth of GHEs is 60 m, 65 m, 75 m and 80 m, the total
cost of the system running for 20 years increases by 1.7%, 0.23%, 0.27%
and 1.0%, respectively. The GHEs with 70 m depth not only meet the
outlet temperature required by the code, but also make the total cost of
the system running for 20 years reach the lowest. Therefore, considering
the performance the system and the total cost of the system running for
20 years comprehensively, the optimal buried depth of GHEs is 70 m.
It can be seen that the operating cost (electricity charge) of the system
has a great influence on changing the optimal buried depth of GHEs.

𝑚e = 20 ⋅ 𝑛 ⋅ 𝑢e (13)

𝑚r = 𝑚i + 𝑚e (14)

where me represents the electricity charge of the system running for 20
years; n represents the power consumption of the system running for 1
year; ue represents the electricity charge per kilowatt hour;mr represents
the total cost of the system running for 20 years.

4. Conclusions

Based on the established three-dimensional finite element dynamic
simulation platform, the minimum buried depth of GHEs meeting the
requirements of the code is calculated, and the soil temperature, annual
performance and total cost of the GSHPS under different buried pipe
depths are studied. The following conclusions are drawn:

(1) The deeper the buried depth of GHEs is, the lower the soil tem-
perature is in cooling period, and the higher the soil temperature
is in heating period. Compared with the GHEs with 60 m depth,
when the buried depth of GHEs is 65 m, 70 m, 75 m and 80 m, the
average soil temperature decreases by 1.69 °C, 2.67 °C, 3.17 °C
and 3.30 °C in cooling period and increases by 0.74 °C, 1.17 °C,
1.39 °C and 1.45 °C in heating period, respectively. In the contin-
uous operation process of the GSHPS for 20 years, the change of
soil temperature is relatively small.

(2) Increasing the buried depth of GHEs can improve the heat trans-
fer effect of GHEs and the operation performance of the system.
Compared with the GHEs with 60 m depth, when the buried
depth of GHEs is 65 m, 70 m, 75 m and 80 m, the average COP
of the unit increases by 4.1%, 6.3%, 7.7% and 8.2% in cooling
period and 1.0%, 1.6%, 1.8% and 1.9% in heating period, respec-
tively.

(3) Considering the performance of the GSHPS and the total cost of
buried pipes comprehensively, the optimal buried depth of GHEs
is 60 m. However, when considering the performance the system
and the total cost of the system running for 20 years comprehen-
sively, the optimal buried depth of GHEs is 70 m. The operating
cost of the system has a great influence on changing the optimal
buried depth of GHEs.
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Occupant behavior in buildings has been considered the major source of uncertainty for assessing energy con-
sumption and building performance. Modeling frameworks are usually built to accomplish a certain task, but the
stochasticity of the occupant makes it difficult to apply that experience to a similar but distinct environment. For
complex and dynamic environments, the development of smart devices and computing power makes intelligent
control methods for occupant behaviors more viable. It is expected that they will make a substantial contribution
to reducing global energy consumption. Among these control techniques, the reinforcement learning (RL) method
seems distinctive and applicable. The success of the reinforcement learning method in many artificial intelligence
applications has given an explicit indication of how this method might be used to model and adjust occupant
behavior in building control. Fruitful algorithms complement each other and guarantee the quality of the opti-
mization. However, the examination of occupant behavior based on reinforcement learning methodologies is not
well established. The way that occupant interacts with the RL agent is still unclear. This study briefly reviews
the empirical applications using reinforcement learning, how they have contributed to shaping the modeling
paradigms and how they might suggest a future research direction.

1. Introduction

Building energy consumption amounts to approximately 30%−40%
of all energy consumed in developed countries [1,2]. The trend of power
demand is still increasing. Not only does this increase the operating cost
of energy consumption, it also contributes to the increasing emission of
greenhouse gasses. Since buildings are also responsible for one-third of
global energy-related greenhouse gas emissions [3], developing efficient
strategies for reducing the consumption of building energy are urgently
required in the future.

Maintaining occupant comfort and use of appliances by occupant
generates 80% of building energy consumptions [4]. As is well known,
occupant behavior is stochastic and complex. Even when an advanced
modeling method is built to include occupant behavior, it is challenging
to quickly apply that experience to a similar but distinct environment.
There is no general scientific standard outlining appropriate model val-
idation techniques especially when multiple behaviors are modeled [5].
As an extreme case, in a simulation study of different models, occupant
behavior with the feature of ‘random walk’ results in a very large per-
formance gap [6]. It has also been recognized that a building could fail
to achieve the desired standards and building designers could miss out

∗ Corresponding authors.
E-mail addresses: mea@du.se (M. Han), 1123389851@qq.com (J. Zhao).

on the opportunity of optimizing building design and control for oc-
cupancy [7]. Modeling occupant behavior may help to understand and
reduce the gap between design and actual building energy performance
[8,9]. However, occupant models are usually context dependent [10].
Simply predicting or simulating occupant behavior in one setting has
its intrinsic challenge in transferring the knowledge to a more complex
scenario.

Studies of occupant behavior have been grouped into three streams:
rule-based models, stochastic models, and data-driven methods [11]. It
has been discussed that occupant behavior models do not represent de-
terministic events, but move into a field where behaviors are described
by stochastic laws [12]. Stochastic models consider the occupant be-
havior to be stochastic because behavior varies between occupants and
may evolve over time [13]. Data-driven methods, however, are con-
ducted without an explicit aim to understand occupant behavior [11].
A building’s physical environment is dynamic and complex. Occupants
can respond quickly to a change of the environment in a process that is
often non-stationary. Attempts to model all possible features for build-
ing operation systems can be intractable and systems accommodating
more features often have significant lag times. Data-driven methods do
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not always set up physical models and often use historical data to char-
acterize features, including occupant behavior.

Rather than on the understanding of occupant behavior, intelligent
control methods used to optimize future reward in building systems
seem to be an alternative approach. These create an agent that learns
from historical behaviors and is trained to adjust the control actions by
utilizing occupant behavior. The occupant interacts with the building
control system via presence, actual activity and providing comfort feed-
back through linked building systems, e.g. HVAC, lighting and windows.
Thus, an optimal control method integrating building performance and
occupant impact offers a novel way of modeling. In a control problem,
generally, an agent is built to complete decision-making tasks in a sys-
tem to achieve preset goal. Building control system, which is a com-
pound of multiple engineering fields, refers to centralized and integrated
hardware and software networks [14] and considers the improvement
of energy utilization efficiency, energy cost reduction, and renewable
energy technology utilization in order to serve local energy loads while
keeping indoor comfort [15]. Control targets usually include shading
system, window, lighting system, ventilation, and heating/cooling sys-
tem.

A recently realized Markov decision process based machine learn-
ing method, known as reinforcement learning (RL), can work in both
model-based and model-free environments [16]. Nevertheless, it is the
classic model-free learning algorithms, such as Q-learning and TD(𝜆),
that makes RL much more attractive and efficient in artificial intelli-
gence applications [17–20]. The effort to solve deep RL problems, for
example [21,22], opens up the possibility of working on large contin-
uous datasets. The distinctive feature of RL is that the agent, via trial-
and-error search, can make optimal actions without having a supervisor,
which fits the goal of a control problem.

These building control systems are able to make decisions based on
data-driven modeling outcomes. The RL method is able to work in a
stochastic environment and to adapt existing data to extract underlying
logic for decision-making, that is, a data-driven method. The agent of RL
treats occupant behavior as an unknown factor and learns to adapt it-
self form what has been observed of human interactions. The RL method
has been in existence for over seventy years, but it was not until the past
decade that researchers started to commit themselves to expanding its
applications. Neither systematic approaches to applying RL on occupant
behavior nor relevant literature reviews have been analyzed from the
methodological point of view. The indication for future RL application
is still unclear. Therefore, the aim of this study is to review the empir-
ical articles on how RL methods have been implemented for adjusting
occupant behavior in buildings, and provide instructive directions for
future research.

Thus, contributions of this study are threefold. Firstly, we present
the results of our literature search and identify the key points emerging
from this research topic in recent years. Secondly, we provide a com-
prehensive understanding of how RL works for building control and an
overview of its implementation requirements. Finally, we identify the
current research gap surrounding building control and propose future
research ideas for modeling occupant behavior.

In the second section of this study, we present the literature search-
ing scope and the outcomes. In Section 3 we briefly introduce the phi-
losophy of RL and its corresponding algorithms. Section 4 then ana-
lyzes the empirical articles. A discussion is presented in Section 5 and
Section 6 concludes with some findings and possible new research di-
rections.

2. Methods and search outcomes

2.1. Methods

We conducted our literature search using the search engine Scopus.
The first reason is that it provides us with multiple document features
that we can adjust such as funding details and conference information.

The second reason is that an interface to the R package bibliometrix, an
open-source tool for executing science mapping analysis, can be created
for conducting analytical bibliometrics where three steps are considered
for the workflow [23]. In step 1, data is loaded and converted to the R
data frame. In step 2, the descriptive analysis and citation networks are
produced; the visualization is made available in step 3.

Our searching keywords and operations are
( ( "reinforcement learning" OR "Q-learning" OR "policy gradi-

ent" OR "A3C" OR "actor-critic" OR "SARSA∗" ) AND "occupant∗"
), where some prevalent algorithms for RL, for example, Q-learning
and policy gradient, are also included to guarantee adequate cover-
age. Adding the wildcard to occupant∗ ensures hits using both singular
and plural forms are returned. The same was done for SARSA∗ because
there are a number of variants of the SARSA algorithm that can be used
for some algorithm-specific articles. We exclude the words behavior∗
or behavior∗ because the RL agent does not only take action based on
particular behaviors, but also adjusts its policy by collecting occupant
feedback for the control system. We do not limit the search by article
type or publication year.

2.2. Search outcomes

The original search returns a total number of forty articles. One of the
selection criteria was that articles where either the occupant behavior or
occupancy was explicitly considered as an element in a Markov decision
process (see Section 3.1) or had an impact on the transition of environ-
mental states were included. In other words, an agent that tried to learn
the optimal control strategy only to satisfy occupant comfort and did
not include dynamic interactions with the environment was excluded
from this analysis. See a relevant review work [24] that examined the
RL control for occupant comfort for more articles that we exclude here.
Careful reading of each of the forty articles resulted in thirty-two articles
that are considered for this analysis. Even though it is not exhaustive,
the outcome of this search, we believe, can form a representative sample
of current understandings within the field.

2.2.1. Publication sources

The thirty-two documents were published in twenty-three difference
sources including international journals, conference proceedings and
book chapter. A summary of the top five publication sources from the
search is shown in Fig. 1. Most of the articles were published in the El-
sevier journal Building and Environment, followed by a second Elsevier
journal Energy and Buildings and the Buildingsys 20191 conference. Each
of remaining eighteen sources has published one article. Even though
full-text articles of some publications are not included in the Scopus
search engine, the long-tailed Poisson-like distribution for publication
sources covers a range of topics including energy, building, computer
science, optimal control, sustainability and engineering. The variety of
publication sources establishes a multidisciplinary collaborative frame-
work for future studies. We also anticipate that the emergence of new
publication sources may attract studies of RL for occupant behavior and
increase public awareness of the topic.

2.2.2. Publication types, years and citations

Of the total articles in this search, the earliest was published in 2007.
After that, no article was published until 2013 (Fig. 2). This strongly sug-
gests that difficulties in the implementation of complex problems has
hindered the development of RL applications. The success of many deep
learning paradigms in the early 2010s, however, seems to have pro-
moted a revival of the use of RL applications, including those in build-
ing control. It has generated the publication of a number of articles by

1 Full name of the conference: BUILDSYS 2019 - PROCEEDINGS OF THE 6TH
ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT
BUILDINGS, CITIES, AND TRANSPORTATION
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Fig. 1. Top five publication sources.

Fig. 2. Type and year of publication and number of citations.

fusing deep RL for solving complex problems. Nevertheless, overall ci-
tations are still low. More attention could be paid to this RL literature
when intelligent control systems for occupants are developed.

2.2.3. Country collaboration

Collaboration between countries allows researchers to share knowl-
edge, data and research infrastructures. The development of RL con-
trol for occupant behavior has just started to be noticed and needs
worldwide collaboration for fast growth. Most historical collaborations
have been carried out between researchers in the United States and
some countries in Europe, as well as in China (Fig. 3). These three re-
gions/countries will likely take the lead in future contributions to the
topic. In the meantime their pioneer activity is setting the stage for com-
prehensive impacts from other regions and countries.

3. The reinforcement learning method

Various studies have reviewed the classification of different control
methods in buildings. For example, Shaikh et al. [14] reviewed the in-
telligent control system for building energy and occupant’s comfort,
whereas Dounis and Caraiscos [25] focused on the agent-based control
system. Aste et al. [26] summarized themodel-based strategies for build-
ing simulation, control and data analytics. The previous surveys provide
a framework of how the different methods relate to each other and the

pros and cons of each. A generic challenge of conventional methods
(e.g. PID, on-off, model predictive control, etc.) lies in the difficulty of
including all unknown environmental factors in the models. Even there
is much room to increase model performance, complex model specifica-
tions usually bring heavy computations [27].

Compared to the conventional methods the RL technique is still not
well developed for buildings. It has not drawn much attention and the
performance of RL algorithms has thus not been evaluated yet. Even
though Royapoor et al. [28] realized that RL methods are notable, a
framework of implementations and explorations on efficient RLmethods
needs to be systematically investigated and discussed.

The shortage of scientific research publications prevents building
users, building managers, device controllers, energy agencies and other
related parties from being aware of the neglected technique. An inte-
gration with explicit occupant behavior has not been comprehensively
examined. The curse of dimensionality, the fact that the number of rep-
resentative environment states grows exponentially with complex prob-
lems, is an inherent problem. Approximate solution methods provide
the possibility to overcome this. Deficient consideration of it hinders the
development of solutions. Thus, the necessity for investigating current
studies and indicating future studies first requires an overview.

The idea of RL derives from the concept of “optimal control”, which
emerged in the 1950s as a way of formulating problems by designing
a controller to minimize a measure of the behavior of a system over
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Fig. 3. Country collaboration map.

Fig. 4. The interaction between agent and environment in an MDP.

time [29]. Bellman [30] came up with the concept of Markov decision
processes (MDPs) or finite MDPs, a fundamental theory of RL, to formu-
late optimal control problems. Unlike conventional control methods, RL
does not require a model. A benefit of a model-free approach is that it
simplifies the problem when the system is complex. Different from inde-
pendent and identically distributed (i.i.d.) data that some conventional
models require, the RL agent receives subsequent reward signals from
its actions. Another benefit is that the trade-off between exploration and
exploitation can be balanced via experiment design. Furthermore, a rich
class of learning algorithms fused with deep neural networks [20] pro-
vide a potential for accurate estimation of value functions.

3.1. Markov decision processes

In a dynamic sequential decision-making process, the state 𝑆𝑡 ∈  of
a RL agent refers to a specific condition of the environment at discrete
time steps 𝑡 = 0, 1,…. By realizing and responding to the environment,
the agent chooses a deterministic or stochastic action 𝐴𝑡 ∈  that tries
to maximize future returns and receives an instant reward 𝑅𝑡+1 ∈  as
the agent transfers to the new state 𝑆𝑡+1. A sequence of state, action and
reward is generated to form an MDP (Fig. 4 [24,29]).

The Markov property highlights that the future is independent of
the past and depends only on the present. In Fig. 4, St and Rt are the
outcomes after taking an action and are considered as random variables.
Thus, the joint probability density function for St and Rt is defined by:

𝑝
(
𝑠
′
, 𝑟|𝑠, 𝑎) = ℙ

[
𝑆𝑡 = 𝑠

′
, 𝑅𝑡 = 𝑟| 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎

]
, (1)

where 𝑠, 𝑠
′ ∈ , 𝑟 ∈  and 𝑎 ∈ . It can be seen from Eq. (1) that

the distribution of state and reward at time t depends only on the
state and action one step before. From Eq. (1), it is straightforward
to obtain the transition probabilities 𝑝(𝑠′|𝑠, 𝑎) and the expected reward
𝑟(𝑠, 𝑎) = 𝔼[𝑅𝑡|𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎] that are used for formulating the Bell-
man optimality equation in Section 3.3.

3.2. Policies and value functions

A policy 𝜋 is a distribution over actions given states and can be con-
sidered as a function of actions. It fully defines the behavior of an agent
by telling the agent how to act when it is in different states. An arbitrary
policy targets on evaluating the expected future return when making an
action a from time t: 𝐺𝑡 = 𝑅𝑡+1 + γ𝑅𝑡+2 + γ2𝑅𝑡+3 +… under a given state
s, where 0 ≤ 𝛾 ≤ 1 is the discount parameter, namely:

𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋

[
𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

]

= 𝔼𝜋

[ ∞∑
𝑘=0

𝛾
𝑘
𝑅𝑡+𝑘+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

]
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈  𝑎𝑛𝑑 𝑎 ∈ .

(2)

The task of finding the optimal policy in Eq. (2), 𝜋∗ , is thus achieved
by evaluating the optimal action-value function q𝜋(s, a):

𝑞∗(𝑠, 𝑎) = max
𝜋

𝑞𝜋(𝑠, 𝑎). (3)

3.3. Value-based algorithms

Strategies to solve Eq. (3) are usually achieved by updating the Bell-
man optimality equation [31]:

𝑞∗(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾

∑
𝑠′∈

𝑝
(
𝑠
′|𝑠, 𝑎)max

𝑎′
𝑞∗
(
𝑠
′
, 𝑎

′)
. (4)

The recursive relationship assists in splitting the current action-value
function into the immediate reward and the value of the next action.
Eq. (4) directly provides us with the formulation of value-based algo-
rithms within temporal-difference method,2 where either tabular meth-
ods or approximation methods can be adopted for obtaining q(s, a).
There is always an explicit state exploration of state-action space for
value-based algorithms.

For problems with small and discrete state or state-action sets, it is
preferable to formulate the estimations using look-up tables with one
entry for each state or state-action value. The tabular method is easy to
implement and guarantees convergence [29]. The tabular Q-learning al-
gorithm [32] is the most common RL algorithm used in building control
[24]. Easy implementation and accurate solutions make it robust in dif-
ferent building control problems. Other tabular algorithms include tab-
ular SARSA, i.e. the so-called state–action–reward–state–action, value-
iteration, and policy-iteration.

For large MDP problems, we do not always want to see separate
the trajectory of each entry in the look-up table. The parameterized
value function approximation 𝑞(𝑠, 𝑎;𝐰) ≈ 𝑞𝜋(𝑠, 𝑎) gives a mapping from
the state-action to a function value, for which there are many mapping
functions available, for example, linear combinations, neural networks,

2 The Monte Carlo method and dynamic programing method are also value-
based. See [29] for more details.

140



M. Han, J. Zhao and X. Zhang et al. Energy and Built Environment 2 (2021) 137–148

and so on. It generates the state-actions that we may not directly ob-
serve. A common way of updating the weight vector, w, is the gradient
descent, which yields deep Q-learning. Algorithms like SARSA(𝜆) and
fitted Q-iteration can also be found in the earlier studies. More recently
developed value-based algorithms [33] have also provided a great num-
ber of opportunities for training the agent in a more flexible way.

3.4. Policy-based and actor-critic algorithms

Another way to solve large MDP or continuous state RL problems
is to apply the policy-based method [34], where the policy is explicitly
represented by its own function approximator, independent of the value
function, and is updated according to the gradient of expected reward,

𝐽 (𝜃) = 𝔼𝜋∼𝑝𝜃 (𝜏)[𝑟(𝜏)], (5)

with respect to the policy parameters 𝜃. r(𝜏) is the total reward for a
given trajectory 𝜏, representing the interactions between the agent and
the environment in an episode. p𝜃(𝜏) depicts the probability of getting a
specific 𝜏 from a stochastic environment under fixed 𝜃. The approach to
finding optimal J can be converted to solve the maximization problem
using gradient ascent with regard to a set of parameters 𝜃, for example,
the weights and biases in a neural network. The policy-basedmethod has
an innate exploration strategy and the variance of the gradient is large
for episodes with long time steps. Some recent algorithms such as Prox-
imal Policy Optimization [35] and Trust Region Policy Optimization
[36] have been developed for complex problems. Subtracting a baseline
b from r(𝜏) may reduce the variance while keeping the gradient still un-
biased. One option is to apply the state-value 𝑣𝜋(𝑠) = 𝔼𝜋[𝐺𝑡𝑆𝑡 = 𝑠] to the
policy gradient methods, known as an actor-critic algorithm. These algo-
rithms work with parameterized policies by relying exclusively on value
function approximation [37]. In practice, the actor-critic algorithms use
deep neural networks to estimate the value function [38,39].

3.5. RL for building control

It has been challenging to apply the trained RL agent to buildings
irrespective of the type occupant behavior due to rigorous training re-
quirement, control security and robustness, and the ability of method
generalization [40]. However, real implementations may validate and
improve the method by observing reliable state transitions and reward
signals. Appropriate specifications of state, action and reward in MDP
have significant impacts on learning outcomes and practical settings.

The states partly determine the complexity of RL control problems. In
building applications, states are mostly defined by the variables that are
associated to physical environment and weather condition for a build-
ing, for example, outdoor temperature, airflow rate, indoor CO2 level
and so on. Sufficient changes in state variables will alter indoor com-
fort level and energy use, which also update building environment for
RL agent to take action. Accurate representation of states will lead to
efficient training process and avoid curse of dimensionality. For contin-
uous state or state with large number of levels, building environment
becomes too complex to get fully explored. Dimension reduction is an
alternative way for resolving the problem [41]. However, it is a collab-
orative work between building management expert and data scientist to
figure out applicable state representation.

The action of an agent is taken based on observed state and the ac-
tion levels can also affect the problem complexity. For a building system,
controlling HVAC (heating, ventilation, and air conditioning) is the most
complicated due to various components and control levels [40]. Actions
like setting constant temperature set point or airflow rate will cause high
energy use, because room occupancy change, outdoor environment and
pre-heating/cooling strategy may also generate effects to HVAC perfor-
mance and energy use. Typical actions of an RL agent do not only try
to immediately improve current reward, but also aim to maximize fu-
ture return. For simpler control problems, for example, window open-

ing/closing [42], action can also be generalized to a continuous domain,
which requires more efforts on making acceptable simplifications.

Two types of rewards have been examined in most of the studies:
comfort level and energy saving. It seems that occupant comfort gets
more priorities when optimization is considered for these two contra-
dictory factors in developed areas. Nevertheless, reward is more related
to contextual, psychological, physiological, and social background of an
occupant. Using same comfort criteria to different individuals will bring
bias to learning process. It is also reasonable to take γ = 1 indicating that
time factor will not give any discount to future comfort.

4. Empirical articles of RL control for occupant behavior

In this section, we will scrutinize the RL applications in two cate-
gories: those where occupant behavior or occupancy is explicitly charac-
terized as a state, action or reward in the MPD; and those which not use
occupant behavior to directly train an agent, but interact with the envi-
ronment by adjusting the state transition, estimating the disturbance of
reward, providing feedback and changing occupancy schedules.

4.1. Occupant behavior in MDP

Nine representative articles were selected to illustrate the first cate-
gory of applications. Their workflows are summarized in Table 1 where
occupant behavior or occupancy interacting with RL agent will be exam-
ined in detail. We also present a breakdown of the specific state, action,
reward and algorithms each application uses.

There is always some doubt when selecting state variables. Selecting
too many will increase the learning inefficiency exponentially while se-
lecting too few will not fully depict the Markov property. Thus, evaluat-
ing the computation power andmodel accuracy should be considered for
making a selection balance. Looking at the actions made on the build-
ing systems, the main interventions have been taken with the HVAC
system, which directly contributes to affecting occupant thermal com-
fort and indoor air quality. It is not surprising that comfort and energy
consumption are the most studies objectives, represented by reward, for
different learning tasks. Incorporating learning efficiency to the reward
also provides us with innovative method in designing the experiment
[43].

4.1.1. Occupant behavior as a state for HVAC control

Most of the applications focused on controlling HVAC by setting oc-
cupancy as the state [44,46,47,50]. This was because the occupant’s
schedule usually followed a fixed routine or could be predicted with
stochastic models. For example, Barrett and Linder [50] developed a
HVAC control system by including the prediction of occupancy, where
a modified Bayes rule was applied. Initial prior probability and environ-
mental experience were used to obtain the posterior probability. The
predicted occupancy followed a multinomial distribution of occupancy
for specific times and returned a binary outcome of true and false.

One of the recent studies [44] added expert experience when they
considered occupancy as one of the states to control HVAC, where the
availability of state-action pairs helped to initialize the neural network
and expert policy was used as a baseline for better policies. Valladares
et al. [46] believed that occupant has strong influence on CO2 level and
included the number of occupants as one of their states, arguing that
CO2 control requires additional fresh air from the outside environment
and increases HVAC loading. Simulations were carried out in their initial
study using between 2 and 10 occupants, a number that was extended to
60 occupants in a subsequent study. A pre-training loop was used for the
exploration of state-action pairs to guarantee that the agent was able to
observe sufficient information for deep Q-learning. Combined with su-
pervised learning for estimating energy consumption given occupant ac-
tivity, Marantos et al. [47] developed a Neural Fitted Q-iteration, where
the Q function was represented in parametric form by a multi-layer per-
ceptron.
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Table 1

Occupant behavior in MDP.

References State Action Reward Algorithms

Jia (2019) [44] occupancy, room

temperature, weather,

time of day, energy

consumption

supply air temperature energy and comfort policy gradient

Park (2019) [45] occupancy, light switch

position, indoor light

level, time of a day

switching lights on/off,

doing nothing

energy and comfort value iteration

Valladares (2019) [46] number of people,

indoor/ ambient

temperature, levels of

CO2, PMV index, etc.

setting temperature

and ventilation system

CO2 levels, PMV index,

and power

consumption

deep Q-learning and

double Q-learning

Marantos (2019) [47] occupant’s existence,

number and activity,

indoor/outdoor

temperature, humidity,

solar radiation, etc.

temperature set-point thermal comfort and

energy

neural Fitted

Q-iteration

Kazmi (2018) [43] environment including

occupant behavior,

embodied energy

content of vessel,

heating mechanism

reheating the storage

vessel or not

comfort, energy,

exploration bonus

model-based RL

Lee (2018) [48] occupant’s feeling of

cold, comfort, and hot

occupancy, occupant’s

overriding the set point

point tracking error

and energy

policy gradient

Zhang (2018) [49] occupancy, day of the

week, hour of the day,

outdoor air

temperature, outdoor

air relative humidity,

etc.

supply water

temperature set point

energy demand and

indoor thermal

comfort

Asynchronous

Advantage Actor-Critic

(A3C)

Barrett (2015) [50] occupancy, room

temperature; outside

temperature

turning on/off heating

turning on/off cooling

indoor temperature,

energy

Q-learning

Fazenda (2014) [51] time that the system

has been in operation,

lifetime desired for the

system, heating on/off

on/off heating/cooling:,

temperature set points,

opening windows

user interaction of

thermal comfort,

energy

Q-learning with

function approximator

4.1.2. Occupant behavior other than as a state for HVAC control

In addition to setting occupancy as the state, Zhang and Poh [49] also
used a smart phone app to collect thermal preferences from the occu-
pants. The RL agent figured out the control policy by using the collected
feedback. A Bayesian model calibration was implemented for heating
energy demand and average indoor air temperature before training RL
agent. The training was carried out in OpenAI Gym with customized
design, which provides them with flexible options to build an RL agent.

Besides occupancy, other studies used occupant’s feeling of cold,
comfort, and hot as a state. One simulation-based work [48] also in-
cluded occupancy, as represented by uniform distribution, and the oc-
cupant’s override at a set point, as actions. A sample averagemethodwas
developed for approximating the gradient, a method that was shown to
be applicable for complicated stochastic problems. The occupant’s inter-
action with the thermostat was also set as the reward in one study, where
the behavior of the occupant was simulated with “out”, “working”, and
“uncomfortable” [51]. All of these studies, however, are based on the
assumption that occupant behavior stays constant. If occupants change
their behavior from time to time, the learning outcomes demonstrated
here may fail to work.

4.1.3. Control for lighting and vessel

Two of the studies used lighting and vessel control respectively as a
way to explore occupant behavior. In a study of lighting control [45],
occupant was detected by smart device. Their feedback on the control
was collected through a survey. RL agent was able to gather the infor-
mation and the learning were continuously updated to adapt the control
parameters via occupant interactions. It has been discussed that the de-
veloped method can also control a dimmable light. For vessel control
[43], future occupant behavior was modeled as an uncontrollable en-
vironmental factor for hot water consumption. This was because of the

limitations of the prediction model. Nevertheless, the study did show
that specific behavior can be learnt from data and that the RL agent was
able to adapt the policy.

4.2. Indirect influence of occupant behavior on MDP

In contrast to the studies that directly characterize occupant behav-
ior in MDP, there are various ways for the occupant to influence the
building control method. The RL agent in these studies optimizes its pol-
icy not by taking occupant behavior as an immediate input to MPD, but
by measuring its indirect effect on the system. A summary of the liter-
atures generates three categories for understanding occupant behavior:
occupancy, actual behavior and providing feedback to the control sys-
tem. For MDP, occupant behavior can have an effect on changing the
state or state transition. In most of the studies, occupant behavior can be
modeled as a stochastic factor to adjust the reward. Only a few studies
associated occupant behavior with action. Detailed references for each
application are shown in Table 2. For the building systems, HVAC is the
mostly examined one, because it makes a substantial contribution to
occupant thermal comfort and indoor air quality. RL controls for light-
ing, window and vessel, for example, are relatively uncommon in the
existing literature; this gap should be addressed in future studies.

4.2.1. Actual behavior and state

Actual behavior includes any activities that occupants carry out to
interact with the building system, for example, using hot water, turning
on the light, and opening the window. The stochastic behavior will lead
to frequent updates of the state in the Q-table. As some studies show, the
inclusion of actual behavior in controlling vessels seems to be a viable
approach [59–61]. Occupant behavior together with current state and
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Table 2

Indirect influence on MDP.

Interactions MDP
State/state transition Reward Action

Occupancy – HVAC ([52–56]); HVAC and

window ([57]); HVAC, lighting,

blind and window ([58])

–

Actual behavior vessel ([59–61]); PV system

([62]); lighting ([63])

HVAC ([53,64]); vessel ([65]);

space heating ([66]); lighting

([63])

HVAC ([67])

Feedback – HVAC([68,69]) –

action, contributing to the state transition, can be modeled as a stochas-
tic time series sequence using real world occupant behavior when the RL
agent develops its policy [61]. Occupant behavior was considered as a
perturbations of the vessel states: energy content inside the storage ves-
sel and temperature [59]. The state transitions were modeled based on
this assumption. Higher hot water consumption might require shorter
episodes to preserve occupant comfort. A SARIMA model learned oc-
cupant behavior, with adjustments for the seasonality of individual oc-
cupant demand. Similarly, individual occupant behavior, or consump-
tion profiles, was modelled, which defines vessel state transitions [60].
Occupant models were built to offer additional insight into individual
occupant behavior types and were used for clustering households. The
SARIMA models also provided reliable predictions for houses with regu-
lar consumption patterns. Non-stationary, nonlinear and highly irregu-
lar consumption profiles were dealt with using the additional bias term.
In these case, different occupant behavior might be the reason for the
variance of energy savings.

The RL method has also been applied to photovoltaic systems. In
[62], stochastic occupant behavior capturing tap water use was included
in a heat pump buffer model. It was counted as energy loss to the en-
vironment. The tap water model used historical data to relate occupant
behavior to hot water demand. This historical data was used to construct
a conditional probability, but it could also be used to generate samples of
occupant behavior. Besides the stochastic occupant behavior associated
with hot water consumption, other behaviors, such as those associated
with the use of cooking appliances, lighting, washing machines enter-
tainment devices and other electrical loads, could also be studied. Occu-
pant behavior is the result of complex decisions that are dependent on
unpredictable personal factors. One study used a hidden Markov model
(HMM) to demonstrate occupant behavior around light usage, where a
RL was applied without the need to consider hidden states [63]. The
authors considered the whole building as a set of spaces and for each
space the occupant occupied a HMM.

4.2.2. Actual behavior and reward

The studies reviewed here also show that occupant behavior can af-
fect the reward. For example, using hot water and having the lights on
at the same time can increase energy consumption. When the RL agent
specifies the reward, insufficient consideration of human activities can
lead to errors. Because it is very challenging to develop explicit phys-
ical models that are both accurate and fast, deep RL (DRL) algorithms
are necessary to adapt for occupant activities [64]. A deep determinis-
tic policy gradient was developed for a HVAC system in [53]. Occupant
behavior was concluded to affect the reward in two ways. First, the sys-
tem was set to occupied and unoccupied periods. The unoccupied spaces
did not have to maintain thermal comfort. Second, variable-air-volume
boxes controlling the volume of conditioned air were installed based
on the set points set by the occupants. These provide more accurate
air temperature controls. The percentage of discomfort occupants in the
experiment experienced was represented by averaging the sensor read-
ings from the boxes. In this study, the authors used a long-short-term-
memory (LSTM) method to model historical HVAC operational data in
order to build a training environment for the DRL agent to interact with.

In the LSTM, the environment took the state and the action chosen by
the DRL agent as inputs and returned the new state and reward for ac-
tion as outputs. The DRL agent was able to learn the optimal control
policy for a HVAC system by interacting with the training.

For studies that considered heating systems, the profiles of individ-
ual occupant behavior were averaged and then applied to simulate the
results [65]. When this was done the SARSA(𝜆) algorithm was then able
to learn the desired behavior – the occupant’s domestic hot water use
- to enhance the heating cycles. The results, however, showed a large
difference in the number of heating cycles between the individual and
averaged profiles. This was due to individual occupant behavior. Occu-
pants’ clothing insulation and activity level, such as sitting, cooking or
sleeping, were used to calculate Predicted Mean Vote (PMV) [66]. The
simulations considered the number of occupants and their metabolic
rate. Typical behaviors during the week (working or studying during
the day, eating dinner at home) and activities during the weekend were
also simulated to evaluate energy consumption. Because occupants may
feel and act differently and wear different clothes, room temperature
has to be adjustable to obtain good thermal comfort.

4.2.3. Occupancy and reward

Occupancy is a more general concept where actual occupant behav-
ior is not formulated. A number of occupancy detection methods have
been be developed [70–72]. From these techniques, it is now possible
to identify if a room is occupied or not and how many occupants it has.
Like actual behavior, the level of occupancy is also a stochastic factor to
be rewarded. In one study of HVAC systems, the transition function of
the MDP was assumed unknown to the agent [52]. The occupants were
assumed to affect the CO2 concentration and to generate heat emission.
When the occupancy level changed, the RL agent had sense this change
and adjust the CO2 levels and temperature accordingly. The reward, in-
cluding CO2, thermal and energy, was calculated based on a negative
sigmoid function. More simply, the indoor air quality was modeled in
proportion to the number of occupants [54], where a 24 h period was
used to form an episode in which the number of occupants in a build-
ing could change. In the simulation, two peak periods for the number
of occupants and CO2 concentrations were found, one at approximately
9:00 am and one at 7:00 pm.

Besides air quality, one of the studies examined thermal comfort in
a single-family residential home [55]. The authors assumed that the oc-
cupants were at home between 6pm and 7am the next day and that the
house was unoccupied between 7am and 6pm. Thus, the RL agent tried
to keep a desired temperature range whenever the occupants were at
home, and remained indifferent to home temperature when the occu-
pants were out. The setting led to a straightforward setback strategy
that turned the system off when the occupants were out and turned it
back on once the occupants were at home. Occupancy schedules and
counts were used as a future disturbance in another recent study [56].
By the end of the experiment, the agent was able to perform well, ir-
respective of the number of occupants. In this study, occupancy count
was not an initial part of the model the authors used for the real test.
When examining the results, however, they found that the amount of
cooling required varied drastically with the number of occupants and so
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Table 3

Comparison of simplification methods.

Benefit Weak point

Variable discretization easy to implement; problem can quickly become simple may lose important information

Dimension reduction able to capture all features inaccurate description to original data

Function approximation efficient for really complex problem not easy to find perfect function

occupancy count was added to their subsequent calculations. Another
approach is to replace default occupancy schedules with actual occu-
pancy schedules collected from real target buildings [58]. This system
was installed in a test building and the collection of accurate occupancy
pattern data at the zone level was then obtained. The RL control system
developed in this case could also accept occupants’ feedback allowing it
to train the agent where only minor modifications were needed.

4.2.4. Feedback and reward

Providing comfort feedback to the control system makes RL agents
react more efficiently. Even though comfort standards, for example ther-
mal comfort [73], can help RL agents to figure out the appropriate com-
fort level, this can be challenging because of data availability and indi-
vidual variation.

In one study an adaptive occupant satisfaction simulator was used as
a measure of user dissatisfaction that originated from the direct feedback
of the building occupants [69]. Every time a signal from the simulator
became available, the simulator was updated to incorporate the new
information. It should be noted that this study was the earliest publica-
tion in our document set. The learning speed was slow and the agent was
still making errors after four years of training. For example, it was still
turning on the heating in summer and cooling during winter. This may
have been because the exploration was not enough. It may also have
been because the use of the recursive least-squares algorithm TD(𝜆) re-
quires high computational demands and large amounts of memory. Fur-
ther training should eliminate these wrong decisions. On the positive
side, this study clustered thermal conditions to produce homogeneous
environments, where the classification was implemented to predict the
level of thermal comfort by using the state space, including clothing
insulation, indoor air temperature and relative humidity [68]. A confu-
sion matrix was then created to evaluate its performance. It formed a
function mapping the state to the reward, which enabled the occupant’s
feedback to be collected by the RL agent for HVAC control. This ap-
proach was able to reach the optimal policy from any start state after a
certain number of episodes. The authors pointed out that when new oc-
cupant provides feedback to the agent, the model needs to be calibrated
for new training.

4.2.5. Actual behavior and action

There are a limited number studies considering occupant behavior
as an indication to action, because optimal action is usually learnt by
the agent. One exception is to make recommendations [67]. Occupants’
historical location and the shift schedule of their arrival and departure
times was used for operational recommendations. The occupants’ loca-
tion preferences, consisting of the distribution of time over the spaces,
were extracted.by using historical data. Location data was also extracted
for the arrival and departure times of each occupant. The occupants
could change location after receiving a move recommendation. The Q-
table was maintained for learning both move and shift schedule recom-
mendations.

4.3. Training RL agent with deep neural networks

Curse of dimensionality refers to high number of levels for state vari-
able or continuous state, which hinders efficient exploration of the state
space and leads to insufficient learning. In Table 3, three types of sim-
plification methods are compared for their pros and cons. For value-
based methods with continuous state, variable discretization takes a set

of single values to represent the whole state space [50,54,63]. However,
including too many such type of variables may easily lose important in-
formation in the data and increasing the size of the data will not help
to compensate the loss. On the other hand, dimension reduction aims
to utilize all dimensions in the variable space to extract principal fea-
tures that are in relatively low dimensions [41]. Although larger amount
of data can utilize more information and extract more representative
features, bridging the extracted features to the original values is not
straightforward and thus the policies may be misleading.

Artificial neural networks are widely used for nonlinear function ap-
proximation. It is a network of interconnected units that have some of
the properties of neurons, the main components of nervous systems.
Function approximation avoids to create a look-up table to store action
values. Instead, approximate value is represented as a parameterized
function. Actions are quickly generated by using a neural network to
map the state into a set of action-value pairs [51]. The number of hid-
den layers in a neural network is associated to the degree of nonlinear
transformations. Neural network with high number of hidden layers in-
dicates more sophisticated mathematical modeling and better mapping
ability, which is also known as deep neural network (DNN). A direct
application is to extend Q-learning to deep Q-learning where the de-
mand of data is high [46,64]. Insufficient data input to DNN is not able
to optimize thousands of parameters in DNN. Thus, high quantity and
quality of data guarantees the convergence of the loss function for a
DNN. An alternative way to overcome the data insufficiency is to ap-
ply transfer learning technique by freezing most layers of a deep neu-
ral network that are pre-trained on data from other source. The model
can be then re-trained with much less trainable parameters from the
target data. The performance of this transfer learning deep neural net-
work model will keep improving over time while more operational data
are streaming into the model [74]. For policy-based implementations
[53,56,75], the parameters in the policy network, 𝜽, connect the DNN
layers in Eq. (5). Unlike deep Q-network, policy network maps a state
to an action that maximizes the expected reward from sampled trajec-
tories. Training policy DNN requires intensive experiments to generate
actual behaviors, which is time-consuming and costly in terms of data
collection. In Section 5, we will discuss the details of implementing an
alternative off-policy strategy.

4.4. The algorithms

Algorithm selection is problem dependent. For problems with small
state-action space, value based algorithms are preferred because the op-
timization can converge quickly. For problems with large state-action
space, creating a table to update learnt action values is not feasible. For
building control applications, it is common to adopt continuous vari-
ables such as temperature, solar radiation, and occupancy duration for
the analysis. Discretization to such variables may mitigate the problem,
but can also generate bias. Thus, variants of Q-learning algorithms and
policy-based algorithms have emerged as ways to achieve more explo-
ration to the state space. As seen in Fig. 5, tabular Q-learning is still the
most commonly used algorithm any more, but the relative frequency
of this has reduced in recent years compared to earlier work [24]. The
variants of Q-learning, for example Q-learning with approximation, and
policy-based algorithms now also supply various strategies for dealing
with continuous state. The class of actor-critic algorithms seem to be an
alternative approach; more applications need to be developed.
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Fig. 5. Algorithms used in the literatures.

4.5. Keywords

The growth of authors’ keywords in recent years depicts how the
topic in this study has evolved. In Fig. 6, we present keyword growth by
using the loess smoothed occurrence. Loess is a nonparametric regres-
sion strategy for fitting smooth curves to empirical data [76]. The phase
“deep reinforcement learning” is a subclass of RL algorithms. “Deep” in
this case refers to the number of layers in a neural network. A shallow
network has one so-called hidden layer and a deep network has more
than one. Training deep neural networks usually requires a large amount
of data and extensive computing resources. Thus, a deep RL agent will
outperform over the long run [77]. For the control target, “energy” and
“thermal comfort” are the most relevant words and are also likely to be
important topics for future study.

5. Discussions

Before training an RL agent, one of two strategies must be selected:
on-policy or off-policy. For on-policy training, the agent learning and
interacting with the environment is the same. For value-based methods,
it estimates the value of the policy being followed. SARSA is on-policy
when the agent starts from a state, makes an action, receives a reward,
and is transited to next state. Based on the new state, the agent takes an

action. The process will be conservative and sensitive to errors, but will
be efficient when the exploration penalty is small. On the other hand,
agents trained by off-policy are different from those interacting with the
environment. Off-policy methods can find the optimal policy even if the
agent behaves randomly. Thus, ignoring the interacting agent’s policy
may lead to a suboptimal policy when most of the rewards are negative.
For policy-based methods, there is also a need to consider the gains
of applying off-policy learning, because the problems can emerge with
large or continuous state-action space and exploration is not feasible.
The agent interacting with the environment is usually making policies
under the parameter setting 𝜃′ that differs from 𝜃 for the agent to be
trained. Approximations can be made by importance sampling [78] in
order to get the gradient. Thus, when an agent is exploring in error-
insensitive systems, SARSA may be the preferred option. Agents that do
not explore should use Q-learning.

Another issue that needs to be considered is the actual implementa-
tion of collecting occupant behavior. On-policy for policy-based meth-
ods can only update its gradient when actual actions are made and J(𝜃)
are observed. Actual deployment of devices in buildings should be able
to provide frequent reward and state signals to the agent. Moreover,
the repetition of the signals’ provision allows the agent to update pol-
icy parameter 𝜃. This is still a challenge, not only for devices but also
for the occupant to remember to repeatedly react in the same environ-
ment so that more sampled trajectories can be collected. Thus, shifting
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Fig. 6. Keywords growth.

to off-policy methods makes learning more efficient for complex control
tasks.

6. Conclusions

This study has briefly reviewed the reinforcement learning meth-
ods for building control that incorporate occupant behavior. Since RL
methods assume that the agent interacts with a stochastic environment
and works in a data-driven fashion, they are of great importance when
forming intelligent building systems where occupant behavior has a sig-
nificant influence on building performance.

Historical publications on this topic were searched for in Scopus to
understand the publication sources, types, years, citations and country
collaborations of the existing published literature. It can be seen that,
because of the success of deep reinforcement learning in game play-
ing, the number of publications in this field has been growing. The
topic covers multiple disciplines including energy, building, computer
science, optimal control, sustainability and engineering. Integration of
diverse domain knowledge may accelerate the construction of more in-
telligent systems. However, the current number of citations is not high
and international collaborations are still only between a small number

of countries. Thus, joint efforts should be made in order to strengthen
the research around the topic.

In this study, we first analyzed those studies that examined occupant
behavior within the MDP framework. Most of the studies we examined
considered occupant behavior as a state for controlling HVAC systems.
It is likely that this will remain the focus of new and upcoming work.
The rest of the literature can be grouped into three categories regard-
ing the ways of interaction: occupancy, actual behavior and providing
feedback where occupant behavior poses an indirect effect on MDP. The
reward is the MDP element that is most sensitive to occupant behavior,
which makes it essential to design the reward in an efficient way [79],
because for occupants with different profiles, their preferences for com-
fort factors will vary [80,81].

Over the course of this review we have noticed that the classical
tabular Q-learning algorithm has become insufficient for building con-
trol with stochastic and complex occupant behavior. Adopting a Q-
table to store action values may yield an unreliable policy. As more
approximation algorithms have been applied to actual studies, future
research should be able to implement, test and verify these in dif-
ferent scenarios. We also compared simplification method and high-
lighted the function approximation with deep neural network due to the
curse of dimensionality. Finally, we discussed some of the issues to be
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taken into consideration when using off-policy strategy. The implemen-
tation of off-policy control requires frequent signal collection from the
occupant.
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a b s t r a c t

At present, laminar airflow (LAF) systems and mixing ventilation (MV) systems are two commonly used ventila-
tion solutions for operating rooms (ORs) to ensure the required indoor air quality. However, recent studies have
shown that there is little difference in the prevalence of surgical site infection (SSI) for the LAF systems and MV
systems. The objective of this study was to compare the performance of an LAF system with an MV system in
ORs at St. Olavs hospital, Norway. In this study, all the experimental measurements were conducted in real ORs
with LAF and MV systems. This study found that the air velocity above the surgical incision is approximately two
times higher in the OR with LAF than that in the OR with MV. The use of surgical lamps and different airflow
patterns may contribute to the different surgical microenvironment of ORs with LAF and MV.

1. Introduction

A surgical site infection (SSI) is an infection within 30 days post
surgery. SSIs account for 36% of nosocomial infections and are the most
common hospital-acquired infections for surgical patients in modern
hospitals [1]. SSIs can be classified by their location, which indicates
their severity. Superficial infections involve only the skin or subcuta-
neous tissue, while those involving deep soft tissues are referred to as
deep incisional infections. The most severe infections involve organs or
body spaces [2]. In Norway, the average SSI rate of hip surgery ranged
from 3.3% to 3.6% between 2015 and 2018. However, more severe vari-
ations can be observed for St. Olav’s Hospital over the same time period
[3]. The general health and disease states of the patient, as well as proper
technique and sound judgment being exercised by the surgical team, are
the most critical factors in avoiding postoperative infections and are dif-
ficult to quantify. However, especially for procedures with low infection
rates (<3%), the development of SSIs is related to airborne exogenous
microorganisms [4].

A Spanish study including 18,910 patients investigated both envi-
ronmental and patient variations in relation to SSIs [5]. A percentage
of 6.7% experienced SSIs, but the definitions and procedures related
to tracking SSIs vary, causing uncertainty when performing compar-
isons. Superficial SSIs were associated with environmental factors, such
as temperature, humidity and surface contamination. Higher relative

∗ Corresponding author.
E-mail address: guangyu.cao@ntnu.no (G. Cao).

humidity was linked to a higher risk of SSIs. However, these were room
characteristics and not directly linked to the surgical wound environ-
ment. Another study regarding humidity in operating rooms also found
an increase in SSI rates with increased humidity, although the differ-
ences in the study were not statistically significant [6].

Thermal comfort is defined as that condition of mind that expresses
satisfaction with the thermal environment and is assessed by subjective
evaluation [7]. An operating room is one of the most controlled work
environments, and it is important that the environment is perceived as
comfortable and healthy for both the surgical staff and the patient [8].
For the surgical staff, it is important to maintain thermal comfort so that
they can perform their work. If the surgical staff experience thermal dis-
comfort, they are either too cold or too warm in their working environ-
ment. The sensation of thermal discomfort can affect their well-being
and lead to poor work efficiency, headache and dizziness. Thermal dis-
comfort for the patient could mean that the thermoregulatory responses
of the human body are suppressed, which can cause illness and, in some
cases, death [9].

Thermal comfort depends on six parameters. They are divided into
two groups: environmental parameters, which consist of the air tempera-
ture, mean radiant temperature, relative air velocity and relative humid-
ity of the air, and personal parameters, which consist of the metabolic
rate and clothing insulation [7]. According to ASHRAE [7], an accept-
able thermal environment is an environment that 80% of occupants find
thermally acceptable. The focus should be to achieve the environmen-
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Nomenclature

A wound area (m2)
B temperature factor (K)
cp specific heat at constant pressure (J/kg•K)
hc convection heat transfer coefficient (W/m2 •K)
hr radiation heat transfer coefficient (W/m2 •K)
hm convection mass transfer coefficient (m/s)
hfg the latent heat of vaporization (J/kg)
kair conductivity of air (W/m•K)
L characteristic length (m)
Le Lewis number
Mw molecular weight of water (kg/kmol)
𝑛
′′
𝑤

vapor transfer (kg/m2•s)
Pw,i water pressure at the temperature of the point above the

incision (N/m2)
Pw,sat saturated water pressure at the temperature of the point

above the incision (N/m2)
𝑞
′′
𝑐𝑜𝑛𝑣

convective heat transfer (W)
𝑞
′′
𝑟𝑎𝑑

radiant heat transfer (W)
q heat transfer (W)
R gas constant (J/kg •K)
RaL Rayleigh number by length scale.
Nu Nusselt number
T temperature (K)
Ti air temperature above wound (K)
Ts surface temperature (K)
Tsur surrounding temperature (K)
𝜀 emissivity (0< 𝜀 <1)
𝜎 Stefan–Boltzman constant (5.67×10−8 W/m2 •K4)
𝜌 density of fluid (kg/m3)
𝜌w,s density at the temperature of the surface (kg/m3)
𝜌w,i density at the temperature of the point above the inci-

sion (kg/m3)

tal conditions where the highest possible percentage of the occupants
feel thermally comfortable [10]. Standards and guidelines regarding the
ventilation of operating rooms often provide ranges for environmental
parameters rather than one specific value. This has to do with the dif-
ferent surgical procedures being performed at a hospital and each pro-
cedure’s requirements for the indoor environment. When determining
the requirements for one specific OR, the needs of the patient and the
surgical team and the security aspects of infection control need to be
considered [11]. Two ventilation strategies usually used in operating
rooms are mixing ventilation (MV) and laminar airflow (LAF).

The working principle of MV is to supply air to a room with an air
velocity high enough to create full mixing throughout the room [12].
The air velocity must be high enough so that the total air volume in the
room is moved [13]. It is important to supply air at a velocity that can
create full mixing in the room while considering that noise might be
generated. The purpose of creating full mixing throughout the room is
to mix the supply air with the existing air to dilute whatever the con-
taminants are present. To avoid draught in the zone of occupancy, the
supply diffusers are usually located in the ceiling or on the wall.

LAF is normally used in cleanrooms such as operating rooms to pre-
vent back swirling of polluted air. Cleanroom ventilation requires high
airflow rates, which is why the ventilation is typically arranged by re-
circulating the air through a bank of high efficient particulate air filters
(HEPA) [13]. In a hospital environment, the ventilation is a unidirec-
tional airflow through the clean zone or room. This unidirectional air-
flow typically has a velocity between 0.3 and 0.5 m/s [13]. The airflow
is highest at the center of the HEPA filter and decreases towards the pe-
riphery. The movement of the surgical staff is an important factor with
LAF ventilation and can transport bacteria to a sterile zone [1]. Fig. 1

shows the working principle of both MV and LAF. As a matter as fact,
using LAF has been recommended in several national guidelines and
standards [14–17]. The great effort of previous studies have been made
on the performance of various ventilation solutions regarding airborne
contamination levels and the whole airflow pattern in the room [18–
22]. However, very little studies have been done regarding the surgical
microenvironment under various ventilation strategies [23]. The objec-
tive of this study was to investigate the effects of LAF systems and MV
systems on the surgical microenvironments in ORs at St. Olavs Hospital.
A surgical microenvironment is defined as the area close to the surgical
incision, illustrated in Fig. 1.

2. Theoretical modeling

Room airflow distribution may affect the heat transfer from the sur-
gical incision by convective heat transfer mechanisms. In addition, ra-
diation from surfaces, including equipment and personnel, induce heat
transfer. Wet surfaces can cause additional heat loss due to the evapo-
ration of fluids [24].

The total heat transfer from the surgical wound can be denoted as
shown in Eq. (1)

𝑞 = 𝑞
′′
𝑐𝑜𝑛𝑣

+ 𝑞
′′
𝑟𝑎𝑑

(1)

where As is the wound area, 𝑞
′′
𝑐𝑜𝑛𝑣

is the convective heat transfer, 𝑞
′′
𝑟𝑎𝑑

is
the radiant heat transfer. The convective and radiant heat transfer rates
are shown in Eqs. (2) and (3) [24]:

𝑞
′′
𝑐𝑜𝑛𝑣

= ℎ𝑐

(
𝑇𝑠 − 𝑇𝑖

)
∗ 𝐴𝑠 (2)

𝑞
′′
𝑟𝑎𝑑

= ℎ𝑟

(
𝑇𝑠 − 𝑇𝑠𝑢𝑟

)
∗ 𝐴𝑠 (3)

ℎ𝑟 = 𝜖𝜎
(
𝑇𝑠 + 𝑇𝑠𝑢𝑟

)(
𝑇
2
𝑠
+ 𝑇

2
𝑠𝑢𝑟

)
(4)

The radiation heat transfer coefficient, hr, is determined from the
surface temperature and surrounding temperature. The convective heat
transfer is determined from the surface temperature and temperature
directly above the wound, Ti.

Assuming the wound geometry is nearly a flat plate with very low
velocities (<0.08m/s), with the characteristic length𝐿 = 𝐴𝑠∕𝑃 , the con-
vective heat transfer coefficient, hc, can be found from the following
Nusselt number correlation in Eq. (5):

𝑁𝑢𝐿 =
ℎ𝑐𝐿

𝑘𝑎𝑖𝑟

= 0.52𝑅𝑎

1
5
𝐿

(5)

where kair is the conductivity of air, and RaL is the Rayleigh number by
length scale.

In this study, mass transfer is limited to moisture transportation. Wa-
ter vapor transfer can be expressed in a manner similar to that of heat
transfer by Eq. (6) [24]:

𝑛
′′
𝑤
= ℎ𝑚

(
𝜌𝑤,𝑠 − 𝜌𝑤,𝑖

)
(6)

where 𝜌 is the density at the temperature of the surface or the point
above the incision. The heat and mass transfer relations for a particular
geometry are interchangeable, resulting in the following relationship
between the heat and mass transfer coefficients as shown in Eq. (7):
ℎ

ℎ𝑚

= 𝜌 ∗ 𝑐𝑝 ∗ 𝐿𝑒
1−𝑛 (7)

Neglecting the net radiative heat transfer under steady-state condi-
tions and treating the air as an ideal gas, the cooling effect of evapora-
tion can be determined from Eq. (8)

(
𝑇𝑖 − 𝑇𝑠

)
=

𝑀𝑤 ∗ ℎ𝑓𝑔

𝑅 ∗ ρ𝑎𝑖𝑟 ∗ 𝑐𝑝 ∗ 𝐿𝑒
2
3

∗
[

𝑝
𝑤,𝑠𝑎𝑡(𝑇𝑠)

𝑇𝑠

−
𝑝𝑤𝑎𝑡𝑒𝑟,𝑖

𝑇𝑖

]
(8)

Retrieved by the heat and mass transfer relation ℎ

ℎ𝑚

= 𝜌𝑐𝑝𝐿𝑒
1−𝑛, n

is assumed to be 1/3, where 𝜌, cp and Le are all air properties. 𝜌 is the
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Fig. 1. Principle of ventilation systems in ORs: (a) a vertical LAF system
and (b) a MV system [13].

Fig. 2. Experimental setup with measurement
points: (a) photo of the LAF OR; (b) photo of
the MV OR.

density, cp is the specific heat at constant pressure and Le denotes the
Lewis number.Mw is the molecular weight of water, and hfg is the latent
heat of vaporization. All the properties are evaluated at Ti. In situations
of very low humidity, Pw, i can be neglected, and the surface temperature
is calculated from Eq. (9):

𝑇𝑠 =
𝑇𝑖 +

√
𝑇𝑖 − 4𝐵
2

(9)

where

𝐵 =
𝑀𝑤ℎ𝑓𝑔𝑃𝑤,𝑠𝑎𝑡

𝑅𝜌𝑐𝑝𝐿𝑒
2
3

(10)

The evaporative heat loss can be shown in Eq. (11):

𝑄𝑒𝑣𝑎𝑝 = ℎ𝑓𝑔𝑛
′′
𝐴𝑠 (11)

3. Experimental setup

In this study, all the measurements were taken from two ORs at
St. Olavs hospital in Trondheim, Norway. The OR with an LAF sys-
tem had an area of 56 m2 with a laminar airflow zone of 11 m2 and
was surrounded by 1.1 m long partial walls, as shown in Fig. 2. Dur-
ing the experimental measurements, the ventilation system was oper-
ated at the full load, and the room temperature was commonly set to
22.4 °C. During the experiments, the supply air temperature was mea-
sured as 20±1 °C. The designed supply air in the orthopedic LAF OR was
10,580 m3/h, comprising 4280 m3/h of outdoor air and 6300 m3/h of
recirculated air.

The OR with an MV system was equipped with four ceiling-mounted
diffusers. For the exhaust, there were two wall-mounted exhaust outlets
and one near the ceiling. The MV OR had an area of 59.7 m2. The supply
air temperature was set to 23.0 °C in all the scenarios. The supply airflow
rate was 3700 m3/h, and the exhaust airflow was 3600 m3/h. During
measurement, an adjustable stand was used to carry the anemometers.

In this study, three scenarios (see Table 1) that included six differ-
ent cases were investigated. Scenario 1 (cases 1 and 2) investigated the
thermal environment in the ORs. Scenario 2 (cases 3 and 4) measured
the temperature and relative humidity in the ORs to calculate the heat
and mass transfer. Scenario 3 (cases 5 and 6) measured the air velocity
of surgical microenvironment in the ORs.

4. Measurement instruments

A variety of measuring devices were used to obtain valid results for
temperature, relative humidity and velocity both in the macro- and mi-
croenvironments. To measure temperature and relative humidity close
to the surgical incision, the humidity and temperature probe HMP9
(Vaisala, Finland) for rapidly changing environments was used, with
a diameter of 5 mm, a measurement range of −40 to 120 °C and 0–
100%RH, and measurement accuracies of ±0.8%RH and ± 0.1 °C at
23 °C. The manufacture calibration of HMP9 instrument was still valid.

A Bosch PTD 1 is a thermal detector based on infrared technology
that detects the surface temperature of the surgical incision. The mea-
suring range for surface temperatures is −20 to 200 °C for ambient tem-
peratures between −10 and 40 °C. The accuracy at a measuring dis-
tance of 0.75–1.25 m, in an ambient environment of 22 °C, is ± 1 °C
for surface temperatures between 10 and 30 °C and ± 3 °C for a tem-
perature range of 30–90 °C. A Flir E60, displaying IR images in addi-
tion to the surface temperatures of the assigned spots, recorded thermal
images and surface temperatures. Temperature measurements by the
device have an accuracy of ± 2 °C for ambient temperatures between
10 and 35 °C Surface temperatures range from −20 to 120 °C, with a
thermal sensitivity of 0.05 °C at 30 °C. The minimum focus distance is
0.4 m.

The TSI velocity meter was used to measure the velocity in a given di-
rection, which was determined by the rotation of the telescoping probe.
For air temperatures within −10 to 60 °C, the readings have an accu-
racy of 3% read value or 0.02 m/s, whichever is greater. TinyTag log-
gers were used to record the temperature and relative humidity room
conditions in the real operating rooms at intervals of 5 min. A Pegasor
Indoor Quality, with an operating temperature range of 0–40 °C, was
used to measure the room conditions in cases 3 and 4. The device has
an accuracy of ± 2 °C and ±1.5%RH.

The air velocity was measured at two points near the wound by us-
ing a Swema 03+ anemometer: The range of air velocity measured was
0.05–3 m/s at 15–30 °C. At 20–25 °C, the measurement uncertainty was
±0.03 m/s in the velocity range of 0.05–1 m/s or and ±3% read value in
the velocity range of 1.0–3.0 m/s. At 15–30 °C, the measurement uncer-
tainty was ±0.04 m/s at 0.05–1 m/s or ±4% read value at 1.0–3.0 m/s.
The logging time for each point was 10 min, with a time interval of 1 s.
The manufacture calibration was still valid.
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Table 1

Scenarios of the experimental measurements.

Scenario Case
Number of
people

Ventilation
mode Remarks

S1 – real surgeries Case 1 6 LAF Thermal images were taken during:

1 h 24 min (LAF), 3 h (MV)Case 2 10–12 MV

S2 – simulated

surgeries

Case 3 6 LAF Parameters in surgical environment:

relative humidity, air temperatureCase 4 6 MV

S3 – simulated

surgeries

Case 5 6 LAF Air velocity

Case 6 6 MV

Fig. 3. Thermal images of the surgeon, assis-
tant surgeon and sterile nurse in MV OR: (a)
After 40 min; (b) After 1 h and 40 min; (c) Af-
ter 2 h and 40 min.

5. Results and discussion

5.1. Thermal images of the surgical microenvironments in two operating

rooms

The footage from the thermal camera is used to evaluate the surface
temperature distributions in both operating rooms. Figs. 3–5 show the
temperature distribution of the surgeon, assistant surgeon and sterile
nurse in both operating rooms. The surgery in the MV OR was the inser-
tion of a stent graft to prevent an aneurysm from growing. This surgery
lasted for approximately 3 h. The surface temperatures of the surgeon
and assistant surgeon are generally higher than the surface temperature
of the sterile nurse (Fig. 3). This can be explained in two ways. The first
is that the surgeons have a higher activity level than the sterile nurse,
which leads to more sweating and heat released from the body. The sec-
ond aspect is the fact that the surgeons are located closer to the surgical
lamps and medical equipment. The equipment releases heat, which can
be absorbed by the clothing of the surgeons, thus increasing the surface
temperature. It can also be observed that the surface temperatures of
all three members of the surgical staff is increase during the surgery,
which is the expected result. The workload during the surgery, in ad-
dition to being in the same room with high air temperature and low
relative humidity, leads to an increasing surface temperature through-
out the surgery.

For the LAF OR, a knee replacement was conducted, which lasted
for approximately 1.5 h. The tendencies observed (Figs. 4 and 5) are
the same as those in the MV OR. Generally, the surface temperature of
the surgeons is higher than that of the sterile nurse but not as clearly
as Fig. 3 shows. Mainly the head and facial region has a higher surface
temperature. This could be because of sweat from the forehead due to
hard and tiresome work. One explanation for why the temperature dif-

ference between the surgeons and the sterile nurse is smaller under LAF
could be the impact of the lamps. The field measurements show that
the lamps in the MV OR emit more heat than the lamps in the LAF OR.
Because of this, the surgeons in the LAF OR absorb less heat from the
lamps. This could affect the surface temperature of the clothing and be
a causative factor as to why the difference between the surgeons and
sterile nurses is smaller. For the MV OR, the surface temperatures for all
three individuals increase during the surgery, as expected.

5.2. Measured temperature and relative humidity

The surgical macroenvironment parameters, including air tempera-
ture and relative humidity (see in Fig. 2), were measured by a Pegasor
Indoor Quality and were very stable throughout the experiments. The
measured average room temperature in LAF OR is 21.2 ±0.47 °C, and
the measured average relative humidity is 14.6 ± 0.73%. The measured
average room temperature in MV OR is 24.6±0.17 °C, and the measured
average relative humidity is 21.7±0.55%.

In the surgical microenvironment, the temperature and relative hu-
midity were measured approximately 1–2 cm above the simulated sur-
gical incision by a Vaisala HMP 9. Fig. 6(a) shows that the measured
air temperature above the simulated incision in case 3 is stable, with an
exception immediately after approximately 3000 s. A drop in the mea-
sured surface temperature and temperature directly above the incision
can be observed simultaneously as the relative humidity increases. The
surface temperature was recorded every minute by the Bosch PTD 1,
while the Vaisala HMP 9 placed approximately 2 cm above the incision
measured the relative humidity and temperature close to the incision.

Fig. 6(b) shows that the surface temperature is already below a real-
istic value and environmental temperature; nevertheless, it is decreasing
steadily. Towards the end of the simulated surgery, the air temperature
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Fig. 4. Thermal images of surgeon and assis-
tant surgeon in LAF OR: (a) After 20 min; (b)
After 1 h and 20 min.

Fig. 5. Thermal images of sterile nurses in LAF
OR: (a) After 1 min; (b) After 1 h.

Fig. 6. Surface temperature of the incision, in addition to temperature and relative humidity measured close to the surgical wound during (a) case 3 in the OR with
LAF (b) case 4 in the OR with MV.

is approximately 8 ∘C higher than the surface temperature. The higher
air temperature in the surgical microenvironment may be caused by
low air velocity comparing with the situation with LAF. Nevertheless,
the surface temperature is still decreasing. The liquid always remaining
at the surface suggests that the cooling effect of evaporation is larger
than the heating from the higher room temperature under the given
conditions.

Prior to the "start", surgical lamps are turned off in case 4. A slight
decrease in the temperature above the incision can be observed at this
stage. However, when the surgical lamps are turned on, a rapid change
in the air temperature occurs. The surface temperature also increases,
but naturally with a slower pace. The relative humidity levels follow
an inverse pattern, resulting in a humidity peak at the lowest air and
surface temperature measured. An explanation for the inverse pattern is
the capability of warmer air to hold more moisture. This implies that for

the same absolute humidity level, lower relative humidity is reached in
warmer air. This justification suggests that the absolute humidity level
does not increase enough to obtain the same relative humidity, even
when evaporation from the incision occurs. After some time, the sur-
face temperature converges towards a value of approximately 28–29 °C.
Being able to have a significantly higher and more realistic surface tem-
perature in the beginning would probably cause a more stable value
throughout the surgery.

The correlation between the relative humidity and temperature sug-
gests that low humidity levels appear for higher temperatures. Further
investigation shows that almost one-third of all the measuring points are
below the recommended RH value, as shown in Fig. 7. For higher tem-
peratures, even lower RH values are measured. Near 37 ∘C, the lowest
RH value is observed, slightly below 13%. The goal of the mixing air-
flow ventilation principle is a uniform air distribution. However, the mi-
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Fig. 7. Relative humidity plotted with the corresponding temperature.

croenvironment differs significantly from the overall room conditions.
The results suggest that to obtain a certain relative humidity in the oper-
ating microenvironment, temperature is critical, which here is affected
by the surgical lamps.

5.3. Calculated incision surface temperature

The theoretical modeling applied to case 3 suggests the introduction
of a time-dependent variable for better approximation of the surface
temperature. As almost a linear trend is observed for the surface tem-
perature, a linear time parameter should be further investigated.

Applied to case 4, another trend can be observed. Going towards the
steady surface temperature, the approximation is close. However, the
inertia in surface heating, due to the thermal properties of the incision,
is not sufficiently considered and should be studied in further work.
Moreover, the dynamic process of evaporation of the surgical incision
may not be accurately expressed and should be studied in further work.

Fig. 8 presents the results calculated by Eqs. (9) and (10), while all air
and water properties are found in tables [24].

5.4. Measured airflow velocities

Fig. 9 shows that the air velocity fluctuates over time. Point 1 was
above the wound, and Point 2 was above the knee at a height of 3.3 cm
from the wound and knee. The point close to the wound experiences a
higher air velocity than the point close to the knee. In the LAF OR, the
vertical laminar airflow directly flows to the surgical microenvironment.
In the MV OR, the supply air swirls into the room from four ceiling-
mounted diffusers, and the airflow velocity is decreasing in the surgical
microenvironment. Hence, the air velocity above the wound and knee is
higher in the LAF OR than that in the MV OR. This may support one of
the latest studies which found that in ORs with high-volume, unidirec-
tional vertical airflow systems had lower risk of revision due to infection
than in ORs with MV systems [25].

6. Conclusion

This study focused on the surgical microenvironment in two ORs
with LAF and MV systems. By using a thermal camera, the thermal envi-
ronment and comfort of the surgeon, assistant surgeon and sterile nurse
were investigated. Based on the measurement results, conclusions re-
garding the surgical microenvironment can be drawn as follows:

(1) The surface temperatures of the surgeon and assistant surgeon are
higher than that of the sterile nurse in both ORs.

(2) A higher surface temperature over time leads to the sensation of
being warmer in the OR with MV than in the OR with LAF and thus
causes thermal discomfort.

(3) The temperature of surgical incision microenvironment in the OR
with MV becomes warmer than in the OR with LAF due to lower
airflow velocity.

(4) The air velocity at a point of 3.3 cm from the surgical incision is
approximately two times higher in the OR with LAF than that in the
OR with MV.

(5) The use of surgical lamps and different airflow patterns may con-
tribute to the different surgical microenvironment of ORs with LAF
and MV.

Fig. 8. Measured temperature approximately 2 cm above the incision, compared with calculated and measured surface temperatures for (a) case 3 (b) case 4.
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Fig. 9. The velocity measurements at two points close to the wound in two ORs for (a) case 5 (b) case 6.

The surface temperatures of the surgical staff differ because of differ-
ences in movement and location in relation to medical equipment. The
fact that one OR experienced more heat emitted from the surgical lamps
could have an impact on the results of thermal comfort and the surface
temperature distribution obtained from observations with the thermal
camera.

The results obtained from measurements in the surgical microenvi-
ronment are consistent with those of the thermal macroenvironment.
In case 4, the emitted heat caused temperatures far above the recom-
mended values, while the corresponding relative humidity values were
below the recommendations. The goal of the mixing airflow ventila-
tion principle is a uniform air distribution. However, the microenviron-
ment differs significantly from the overall room conditions. The results
suggest that to obtain a certain relative humidity in the operating mi-
croenvironment, one critical factor is local temperature, which will be
affected by the surgical lamps.

In case 3, less heating from surgical lamps causes a slower evapo-
ration of wound moisture. However, the evaporative cooling effect is
suggested to be greater than the net heat gain due to radiation and
convection from warmer, ambient environments. As the set values in
the investigated operating room are below recommended values, fur-
ther investigation is needed to evaluate the impact of these parameters.
The presented equations provide a reasonable estimate of surface tem-
perature in the surgical microenvironment. Nevertheless, further inves-
tigations and confirmation of these results are necessary. In particular,
theoretical models related to moisture transfer need more validation.
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a b s t r a c t

The efficient heat dissipation of electronic equipment is very important, its heat dissipation performance directly
determines the life of the equipment itself. A hand-held electronic communications equipment, when used in
surface temperature is exorbitant, need to heat dissipation equipment efficiently, to ensure that the use of comfort
in the handheld. In accordance with this requirement, this article presents a flexible composite material based
on nano-efficient cooling methods that can keep the layout, through the improvement of internal thermal path,
it can achieve the effective heat dissipation. The network thermal resistance method is used to analyze the heat
transfer in the equipment, and the thermal analysis of the local thermal resistance is carried out. At the same
time, through the modeling of electronic equipment and the analysis of finite elements, the temperature drop of
the equipment after improvement is accurately judged. Finally, the device experimental performance comparison
before and after the optimization of the standby mode and working mode is verified. The results show that the
optimized equipment heat source temperature can be reduced by up to 8.5°C, the surface temperature of the
equipment can be reduced by about 5°C~7°C, and the final control equipment in the steady standby state of the
temperature of about 39±0.5°C, to ensure the comfort of use, and also improved the service life of the equipment.
The efficient thermal design of electronic equipment based on flexible nanocomposites can provide a convenient
and reliable cooling solution for high-heat flow density devices.

1. Introduction

In recent years, with the rapid development of electronic technology,
electronic equipment is not only used in aircraft, satellites, space shuttles
and ships and submarines and other military fields, but also widely used
in industrial production, communications systems and personal com-
puters and other civilian fields [1–3]. Along with social development,
electronic device development in the increasingly sharp contradictions,
on the one hand, electronic equipment is small, it has lots of features,
portability, wide adaptability to environment and development needs,
and the device itself as a result of thermally constrained, thermal con-
trol becomes increasingly difficult problem [4]. Especially in the field of
aerospace and military electronic equipment, it is need to have good en-
vironmental adaptability, high reliability and so on. Therefore, effective
thermal control of electronic equipment is the key point to improving
product reliability [5,6].

By current research at home and abroad, electronic devices effi-
cient heat dissipation generally forms thermal analysis, thermal design
and test the design architecture [7–9]. Thermal analysis includes soft-

∗ Corresponding author.
E-mail address: 273060531@qq.com (D. Yang).

ware such as ANSYS, Flotherm, ICEPAK, ALGOR, BETAsoft, Padsther-
mal, COOLIT [10–14], and coupling optimization analysis that combines
thermal properties with multiple objectives such as fluids and struc-
tures [15,16]. Thermal design mainly includes the spatial structure lay-
out of electronic components, internal cooling equipment components
(fan, heat pipe, heat sink, etc.) design, local high heat flow density mi-
crochannel cooling and interface-enhanced cooling, new high-efficiency
heat dissipation materials, etc. [17–20]. Thermal testing can be used
by thermocouple method, integrated circuit measurement method, ther-
mistor measurement and optical fiber measurement, but thermal testing
is greatly affected by the ambient temperature, the thermal effect evalu-
ation of electronic equipment should establish a more accurate thermal
testing way [21–23].

In these studies, most of the optimization design methods research
are carried out before the development of equipment, once the equip-
ment development, it is difficult to take amore effective way for efficient
thermal design. Based on the problem of high surface temperature of a
handheld high-power communication equipment developed, this paper
relies on a highly efficient thermal material used in spacecraft and satel-
lite platforms - flexible nanocomposite material [24], without changing

https://doi.org/10.1016/j.enbenv.2020.07.008
Available online 12 August 2020
2666-1233/Copyright © 2020 Southwest Jiatong University. Publishing services by Elsevier B.V. on behalf of KeAi Communication Co. Ltd. This is an open access
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Fig. 1. Terminal equipment and temperature testing.

the original structure layout, the cooling of two types of equipment are
improved efficiently. The local thermal efficiency is evaluated by net-
work thermal resistance method, and the optimal simulation analysis
and test verification are used to provide an effective solution for the
efficient cooling of high-heat flow density equipment.

2. Thermal analysis of electronic terminal equipment

The communication devices used to analyze thermal effects in this
article, with long-range emergency wireless communication, positioning
navigation and other functions, internal heat sources are mainly power
amplifiers, batteries, CPUs, transformers, rectifiers and inductors. The
electronic terminal equipment is divided into basic and enhancement
types, and enhancement type increased the ergonomic design based on
the basic model, including the display and the function buttons, its func-
tion is consistent with the basic type, the internal structure is also con-
sistent, but the overall external size is slightly larger. The structural
size of enhancement and basic type are: 190mm × 68mm × 38mm,
160mm × 60mm × 32mm, respectively. Themetal structure is aluminum
alloy 5A06, non-metallic structure is mainly PCB board and electronic
components, battery capacity is about 25000mA. When the device used,
it is divided into two modes: standby mode and operation mode, the to-
tal power consumption in standby is about 7.5W, while it is 9.6W when
operating, and the device will produce power peak under this condition.
In addition, in order to adapt to the complex work environment, such
as salt fog, moisture and mold, the communications terminal equipment
designed the closed shell with aluminum alloy material, the emissivity
of surface coating is 0.78.

The equipment has the characteristics of small size, high power con-
sumption and scattered heat source that caused the temperature-to-
external cooling path of the internal heat source is very limited. When
the device used in hand, it often causes uncomforting because the sur-
face temperature is too high. Twomodels of the device were preliminary
tested under standby mode, with an ambient temperature of 25°C. The
test thermocouple has an accuracy of 0.001°C, and the power consump-
tion of each of the 2 units is basically the same, the testing results was
shown in Fig. 1.

After the equipment running 2 hours under standby mode, the equip-
ment reached the steady state, the basic equipment surface temperature
tested 46.6 °C, enhancement type reached about 43.4 °C. As the equip-
ment belongs to the handset, the surface temperature of the environment
at room temperature is too high, when people used under harsh envi-
ronments, it would be seriously affecting human comfort, therefore, the
equipment need to be efficient thermal design to satisfies the normal
operation requirements.

3. Efficient cooling scheme design

The commonly efficient cooling technology used includes natural
cooling, forced air cooling technology, liquid cooling technology, evap-
orative cooling technology and heat pipe technology et al. [25,26]. As

the electronic device belongs to closed communication, its internal heat
flow density is relatively large, and it cannot be used to drill a cooling
hole in the metal housing of the device or add a fan outside the device
to force heat dissipation. When the equipment effectively the radiation
effect enhanced, three aspect factors consideration should be following:

(1) Control the product design process, reduce the generation of heat
resistance between the components as far as possible;

(2) In terms of structural design, to the maximum extent possible to
make electronic components can effectively transfer the flux to the
metal shell;

(3) Try to make the heat transfer effectively raised from equipment chas-
sis metal shell to the environment.

Through the structural analysis of the device, most of the device heat
source is concentrated on the internal PCB board, and the thermal path
of the heat source is very limited, so that the heat source inside the de-
vice does not have an effective transmission way. In this paper, flexible
nanocomposite materials would be used, focusing on the establishment
of the equipment’s internal heat source and external structure of the
rapid cooling channel, so that creating a good heat flux path.

Flexible nanocomposite material is a kind of carbon fiber reinforced
carbon composites (C/C composites) [27,28]. The material is mainly
based on the requirements of high heat flux under the current high ther-
mal flow density equipment, based on the lack of heat flux transmission
of single-layer graphene carbon-based materials, combined with the aro-
matic structure advantages of high flatness and high orientation of poly-
imide (PI) fibers, through the design and craft processing of PI-based
carbon fiber, the microscopic structure of fiber is developed from two-
dimensional graphite structure to an orderly three-dimensional layer
structure.

Polyimide (PI) fiber is a kind of polymer fiber with aromatic ring
and imide ring in the main chain, it can be carbonized and graphitized
to prepare high crystallinity graphite fiber. The manufacturing method
is as follows: The mass ratio of PMDA and the sum of two amines is
1.02: 1, the two amines are 3,5-diaminobenzoic acid (DABA) and p-
phenylenediamine (p-PDA), the mass ratio of DABA to p-PDA is 5:95,
the carboxyl groups in the molecular chain of PI fiber can form hydro-
gen bond and physical crosslink. The copolymerized PI (co-PI) fibers
were first carbonized in nitrogen at 1400 °C for 1 h, then graphitized
in argon at 2800 °C for 1 h. The physical crosslinking co-PI fiber forms
a compact and uniform skin core structure, which improves the ther-
mal stability and carbon residue rate, the highest thermal conductivity
is 245.6 w/(m k). With the increase of DABA content, the graphitization
degree of graphite fiber first increased and then decreased.

Through very multi-layered graphite alkene membrane graphitiza-
tion, it formed the graphite alkene film, and realized to have the good
ductility and the thermal conductivity. At the same time, considered the
request of the device electronic installation, the graphite alkene mem-
brane surface was insulated, this method not only satisfied the highly ef-
fective heat transfer, it also guarantees the security of electronic compo-
nents inside the device. In the production of materials, first, the material
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Fig. 2. Microstructure of nanocomposites (a) material 3D surface features construction, (b) material surface carbon structure connection form, (c) material multi-layer
composite structure.)
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Fig. 3. Two kind of equipment outward appearances and nanometer compound materials design.

Table 1

Nanocomposite performance parameters.

Num. Content Parameters

1 Thickness 0.3mm/0.5mm

2 Superficial cellophane thickness 0.05mm

3 Graphite alkene film number 200/400 layer

4 Crosswise thermal conductivity 1600–1800 W/(mK)

5 Longitudinal thermal conductivity 220–280 W/(mK)

6 Flexibility 180° bend stowable

7 Strength 800–1000 MPa

8 Density 600 kg/m3

layer graphene, and then, using a layer of 0.5-micron film first attached
to the insulation layer, and then the insulation layer and graphene film
bonded together. With a very thin film connection method, can not only
ensure good heat transfer performance, but also have good insulation.
Microstructure of nanocomposites and performance parameters have
shown in Fig. 2 and Table 1, respectively.

Nanocomposites have the characteristics of good environmental
adaptability and high thermal conductivity, and have been widely ap-
plied to high-power equipment in spacecraft. Based on the thermal ef-
fect of the equipment and the efficient cooling method in the spacecraft
and satellite platform, the following cooling scheme is adopted for the
equipment:

(1) Adding an embedded substrate to the circuit board of an electronic
component, it can increase the contact area between the heat source
and the embedded substrate, and increase the contact stress so that
reducing the contact thermal resistance.

(2) Increase the contact surface, according to the terminal device inter-
nal space and heat source distribution, the nano-composite materials
are trimmed into different shapes, and bonding with metal shell by
adhesive film, and this may realize the metal shell highly effective
fast soaking. The remaining part of the small power heating element,
use the thermal grease directly to the metal shell.

(3) Increase the heat sink between the heat source and the rear shell at
the rear of the PCB board to improve the heat channel.

Finally, a thermal optimization design model for the device is
formed, as shown in Fig. 3 below. The gray part is a simplified struc-

tural model of the equipment, adding nanocomposites to the front and
rear shells of the device, represented by different colors, all structures
are flexible nanocomposites, with different colors, such as pink, yellow,
light blue and dark blue, representing different shapes of the conform-
ing material to facilitate the placement of the conforming material in
different spatial positions inside the device, and the front part of the
device is the increased heat sink.

4. Efficient thermal analysis

4.1. Network thermal resistance model

When the temperature change struck in the device, the thermal flow
rate in the device will change accordingly. When the device is operat-
ing, the internal temperature, heat flow rate, boundary conditions, and
system change significantly over time, the temperature of the transient
balance equations are expressed in the following formula [29]:

[𝐶]
{ ⋅
𝑇

}
+
[
Δ𝑇𝑖

]
[𝑅]−1 = {𝑄} (1)

In the formula (1), [R] is the thermal resistance matrix, including
heat conduction thermal resistance and counter-flow thermal resistance,
[C] is a heat matrix that contains an increase in energy within the sys-
tem, [ΔTi] is the temperature vector matrix of the node, {

⋅
𝑇 } is the

temperature-to-time derivative, {Q} is the amount of node heat flow,
including the heat generation rate. When steady state is reached, the
device is thermally stable, namely 𝑄𝑖𝑛 +𝑄𝑔𝑒𝑛 +𝑄𝑜𝑢𝑡 = 0, Based on en-
ergy balance, a steady-state equation is established as follows.
[
Δ𝑇𝑖

]
[R]−1 = {𝑄} (2)

As the heat source in the terminal equipment have about 16, and
the structure is irregular, Thermal resistance can be used to trace the
thermal conductivity inside the device and establish a thermal resis-
tance network of multiple heat sources through the thermal flow path,
as shown in the Fig. 4. Among them, the red thermal resistance is the
increased thermal resistance after optimizing the design, and the rest of
the thermal resistance is the thermal resistance network formed in the
original state of the equipment.
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Fig. 4. Thermal resistance network of electronic terminal equipment.

Combined with a thermal resistance network model, define the tem-
perature thermal resistance matrix and shown in the following type.

[Δ𝑇 ] =
[
𝑇1, 𝑇2, … , 𝑇23

]
−

⎡
⎢⎢⎢⎢⎢⎣

𝑇7 , 𝑇1, 𝑇1, 𝑇1 , 𝑇1, 𝑇1,… , 𝑇1
𝑇9 , 𝑇2, 𝑇2, 𝑇2 , 𝑇2, 𝑇2,… , 𝑇2
𝑇7 , 𝑇3, 𝑇3, 𝑇3 , 𝑇3, 𝑇3,… , 𝑇3
𝑇9 , 𝑇4, 𝑇4, 𝑇4 , 𝑇4, 𝑇4,… , 𝑇4
…

⎤
⎥⎥⎥⎥⎥⎦

,

[𝑅] =

⎡
⎢⎢⎢⎢⎢⎣

𝑅1 , 0, 0, 0 , 0, 0,… , 0
𝑅2 , 0, 0, 0 , 0, 0,… , 0
𝑅3 , 0, 0, 0 , 0, 0,… , 0
𝑅4 , 0, 0, 0 , 0, 0,… , 0
…

⎤
⎥⎥⎥⎥⎥⎦

(3)

According to the classical definition of the thermal resistance of heat
conduction and convection, the thermal resistance can be expressed as
formula (4) shows.

Ri=
L
𝜆iA

=
ΔT𝑖

𝑄
; Rj=

1
hjA

=
Δ𝑇𝑗
𝑄

; (4)

In the formula, Ri is the thermal resistance of thermal conductivity
of inside the device, Rj is convective heat resistance on the surface of
the device, ΔTj is the temperature difference at the internal node j, ΔTw
is the temperature difference at the surface node w, when a multi-heat
source is heat-transferred in a multidimensional direction, the thermal
resistance matrix [R] can be expressed as:

[R] =
[
Ri ; R𝑗

]
, [ΔT] =

[
ΔTi ; ΔT𝑗

]
(5)

Considering the external radiant heat dissipation of the surface of its
equipment, radiation energy can be calculated as follows:

𝑄𝑗 = 𝜀𝐴𝐶0

((
𝑇𝑗

100

)4
−
(

𝑇0
100

)4
)

(6)

[𝑄] =
⎡
⎢⎢⎣

𝑄1
𝑄2
…

⎤
⎥⎥⎦
,

16∑
1
𝑄𝑖 +𝑄𝑗 = 𝑊 (7)

Formula (3)–(7) has composed the stable state the equipment inter-
nal heat transfer model, T1~T6, T11~T19, T23 indicates the heat source.
R1~R38 is the thermal resistance of the device, Under the network ther-
mal resistance, series thermal resistance is mainly R31 to R38, and R31,
R35, R36, R38 is the convective thermal resistance between the shell and
the environment. For series connected thermal resistance, when any of
the simple point increased, it possibly affects the whole effect of the
cooling. The optimization measure is, as far as possible, establishing the
heat transfer path between the internal heat source and the external
housing. After the equipment optimized in Chapter 3, the thermal re-
sistance R39 to R45 is added. In order to better analyze and optimize
the characteristics of the design in the thermal resistance network, the
thermal resistance network in Fig. 4 is simplified and formed as shown
in Fig. 5.

As can be seen in Fig. 5, after the optimized design, the heat source
of T1~6 was added in parallel with R39 and R40. The R40 is the heat
resistance of the thermal pad increased at design time, R45 is the in-
creased heat resistance of the heat sink, and R39, R41~44 is the thermal
resistance produced by the high-performance nanocomposite. Due to
its R41~44 thermal conductivity is about 10 times higher than that of
aluminum alloy, and 103 times higher than the thermal conductivity
on the PCB board. Considering the thermal conductivity area and in-
terface thermal resistance influence, R41~44 is about 1/100 of R23~26,
and 1/10 of R32~33. This is equivalent to the establishment of an effi-
cient heat transfer path directly between the heat source and the device
shell, and can greatly reducing the heat barrier effect during multi-layer
heat resistance transfer. Particularly, the small contact area of local heat
sources led to R1~12, R13~16 thermal resistance increased, and the low

160



D. Yang, Q. Yao and M. Jia et al. Energy and Built Environment 2 (2021) 157–166

Fig. 5. Thermal Resistance Network Simplification Model.

thermal conductivity of PCB panels and other non-metallic materials in
the equipment keeps the R27 to R30 thermal resistance large. Although
there are multiple thermal resistances in parallel, the thermal resistance
values are close, and the total thermal resistance remains in the same or-
der of magnitude. Take the thermal resistance between T11~12,18~19 and
T22 as an example, the total thermal resistance after parallel ingesting
is:

𝑅𝑇𝑜𝑡𝑎𝑙 =
1

1
𝑅23

+ ... + 1
𝑅26

+𝑅32 +𝑅33 (8)

In the thermal resistance network, the various thermal resistances
in R23 to R26, R41 to R44 are basically the same. According to the
R41=1/100 R23=1/10 R32, Thermal resistance in the formula (8) is
𝑅𝑇𝑜𝑡𝑎𝑙 = 45𝑅41, After R41-44 paralleled, R41~44=1/4 R41, the total ther-
mal resistance after optimization is:

1
𝑅′

𝑇 𝑜𝑡𝑎𝑙

= 1
45𝑅41

+ 1
0.25𝑅41

(9)

As can be seen from the formula (9), with the addition of high ther-
mal conductivity materials, the local thermal resistance to the interior
of the equipment is reduced by about 180 times. The thermal transfer
path optimization design by ultra-high thermal coefficient material can
be a good solution for the problem of high local temperature.

By matrix analysis, it can be seen that, the establishment of thermal
resistance network analysis has a clear heat transfer path, which can be
simply analyzed. However, the temperature vector produced by the de-
vice space in the three dimensions is not the same, and the calculation
method of network thermal resistance is not accurate enough. Also, the
heat of the internal heat source affects each other, and it is difficult to
judge the temperature transfer vector. Efficient cooling methods need
to be calculated with the help of thermal analysis software to evalu-
ate the effectiveness and accuracy of this cooling scheme. In this paper,
using the finite element method of ANSYS software, the analysis and
comparison is carried out before and after the optimization of the termi-
nal equipment to determine the temperature drop effect of this cooling
scheme for the equipment.

4.2. Finite element optimization analysis

Inside the equipment, the internal heat source of the electronic de-
vice is distributed in different locations, and the internal heat conduc-
tion path is transmitted in multiple dimensions. The inside of the device
is confined, so the heat conducting is the main way, the surface of the
device and the environment belong to the natural convective heat ex-
change, and the surface has a high radiation rate coating to dissipate
heat outwards, the relevant dimensions of the equipment are shown in
the Table 2 below.

Thermal simulation analysis used the Steady Thermal module in AN-
SYS to analyze the temperature field of the device in a steady state [30].
In steady-state simulation, the differential equation is:

𝜕

𝜕x

(
kxx

𝜕𝑇

𝜕x

)
+ 𝜕

𝜕y

(
kyy

𝜕𝑇

𝜕y

)
+ 𝜕

𝜕z

(
kzz

𝜕𝑇

𝜕z

)
+q̇ =0 (10)

Expand the full derivative of the time to get:

d𝑇
dt

= 𝜕𝑇

𝜕t
+𝑉x

𝜕𝑇

𝜕x
+𝑉𝑦

𝜕𝑇

𝜕𝑦
+𝑉𝑧

𝜕𝑇

𝜕𝑧
(11)

Among them, Vx, Vy, Vz is the speed of the conduction medium.
When steady state is reached, the steady-state matrix formed by the
nodes in the 3-D model is [31]:

[𝐾(𝑇 )]{𝑇 } = {𝑄(𝑇 )} (12)

[K] is the temperature function, {Q} represents a stable heat source,
and treated as a constant. The meaning of Eq. (12) and Eq. (2) is similar,
except that the temperature function in the software embedded model
is used instead of the thermal resistance in Eq. (2).

The cell node temperature matrix is [32–33]:

𝑇 = {𝑁}𝑇
{
𝑇𝑒

}
(13)

Among them, {N}T is a cell shape function, {Te} is a cell node tem-
perature vector. The contact between the components is considered
Bonded, and the surface smoothness, surface roughness, pressure and
thermal grease of the material itself are identified by the steady-state
thermal analysis model itself.

The outer surface was calculated by natural convection, with a con-
vective heat exchange coefficient set to 10 W/(m2 K), the external ra-
diation rate of the outer surface set to 0.78, the thermal source of the
electronic component was set to the body heat source according to the
actual space layout, with a total power consumption of 7.5 to 9.6W.
Due to the device is in standby model most frequently, the simulation
adopted the device’s standby state power consumption, about 7.5W.

The thermal simulation of the two devices was carried out in a steady
state to obtain the temperature field of the surface and internal heat
source of the equipment, the temperature distribution is shown in Fig. 6:

Before the equipment optimized, the internal maximum and mini-
mum temperature sits in line with the temperature initially tested in
Chapter 2. For the basic type, in the simulation, the maximum temper-
ature inside the device is 59.5 °C and the maximum temperature on the
outer surface is 46.5 °C. The measured equipment external surface tem-
perature was 46.6 °C, the simulation results agree well with test results.
Through optimization, the maximum temperature inside the equipment
can be reduced to 47.9 °C, the maximum temperature of the equipment
surface is reduced to 43.7 °C, both the internal and shell temperature
drop is about 6.5 °C.

For the enhancement type, the heat source of the simulated equip-
ment is 57.5 °C and the outer surface temperature is 44.5 °C, while in
the actual test, the maximum temperature of the equipment surface is
43.4 °C. After optimized, the equipment within the highest temperature
is 44.2 °C, the highest surface temperature of 39.1 °C. Compared with
data before optimization, internal and surface temperature drop is 9.8 °C
and 5.1 °C respectively.

Through the equipment simulation and experiment comparison be-
fore and after the optimization of the two models, we can see that: (1)
the simulation results have some errors with the actual test, mainly due
to the structural simplification of the internal structure of the unit, en-
abling the interface thermal resistance internal between the heat source
and the PCB, the heat source and metal structure. That makes the inter-
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Table 2

Terminal equipment heat source and main component size parameters.

Name Dimensions (L × W × H)/mm Materials Power Consumption/W Description

CPU 22 × 22 × 2 Aluminium package 0.25 × 4 4 in total

ICH 25 × 10 × 1.5 Aluminium package 0.1 × 3 3 in total

Memory 13 × 10 × 1 Aluminium package 0.1~0.4

Battery 60 × 425 × 8 Aluminium package 1.6

PCB Board 1 130 × 55 × 1.5 FR4 with copper / 𝜆=0.4W/(mK)

PCB Board 2 130 × 55 × 1.5 FR4 with copper / 𝜆=0.4W/(mK)

Thermal pad 30 × 35 × 2 Thermal media / 𝜆=3W/(mK)

Adapter 48 × 40 × 2 Aluminium package 0.7

Amplifier chip 25 × 25 × 2 Plastic package 3

Front Shell 190 × 68 × 26 Aluminium / 𝜆=180W/(mK);ɛ=0.78
Back Shell 190 × 68 × 10 Aluminium / 𝜆=180W/(mK);ɛ=0.78
LED Screen 75 × 60 × 1.5 PTFE / 𝜆=0.05W/(mK)

Capacitive chip 50 × 35 × 2 Aluminium package 0.2–0.8

DSP 32 × 27 × 2 Aluminium package 0.1 × 3

I/0 chip 10 × 10 × 1.5 Aluminium package 0.3–1.2

Antenna 420 × Φ30 Aluminium package /

Total Power Consumption 7.5–9.6

Fig. 6. Comparison of steady-state temperature field distribution in standby mode of two devices.

face thermal resistance is difficult to calculate accurately, so, there are
some error for simulation temperature field and the actual test tempera-
ture point. (2) Through the optimization design of the inside equipment,
nanocomposite increased the function of thermal resistance in parallel,
which can realize homeothermy quickly, eventually making equipment
inside and outside temperature cooled down considerably. (3) The en-
hancement equipment volume is relatively big, surface area of convec-
tion heat exchange to the environment correspond larger, so the tem-
perature drop effect is also better.

4.3. Test verification

Based on the optimized analysis of high-efficiency heat dissipation
in Chapter 3, it is shown that the optimized cooling scheme has good
temperature-lowering performance, in order to verified the actual per-
formance, the corresponding optimization on the equipment was devel-
oped.

The nanocomposites were attached the structure of the device for
rapid average temperature, using the good flexibility of nanocomposites,
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Fig. 7. Equipment optimization and testing.

the front shell and heat source of the device are bonded together with
polyimide film, meanwhile, the space available on the front and rear
shells was paste the nanocomposites. Before pasting, heat the material
to 60–70°C to avoids trace gases between the films and maximizes the
area of contact between interfaces. In addition, thermal pads and heat
sinks have also be added to the interior of the device. The thermal pad
is mainly to establish a heat channel between the CPU and the rear
shell, the heat sink is built between memory and the front shell, this
allows multiple thermal resistances to be paralleled to reduce the overall
thermal resistance in the thermal resistance network, as shown in Fig. 7.

When optimized device was tested for performance, the Agilent tem-
perature detector was available with 40 channels and the scan rate of
100 channels/s, the thermal offset <3𝜇V, which can be applied to a va-
riety of temperature sensor signal conversion. For testing, two devices
were used for each type, one device was optimized and the other kept
the initialization serve as a contrast. The devices tested at the same envi-
ronment can avoid the interference caused by external factors. In addi-
tion, in order to guarantee the external environment disturbance, used
transparent thin film to establish the good natural convection environ-
ment around the experimental platform, also, the indoor environment
temperature control at 23±0.5°C.

The experiment tested the temperature change of the device in
standby and operating state. In standby, when the temperature fluctu-
ation range kept within 0.5 °C, is considered to be stable state. When
working, the device works for 5min every 15min standby, the temper-
ature peak error of the final measuring point is considered to be stable
when the error is within 0.5°C. Finally, it forms the temperature varia-
tion curves under two conditions, as shown in Fig. 8.

According to the usage status of the two devices, the temperature
change of the device was tested before and after optimization in the
standby mode and operating mode. Fig. 8 selected two typical locations,
Fig. 8(a) and (b) as the most power-consuming internal heat source mea-
suring point, which is also the highest internal temperature, Fig. 8(c) and
(d) are the hottest measuring points on the outer surface of the device.

The curves of internal heat source in standby mode shown as in
Fig. 8(a). The temperature rose faster before the basic type optimized,
and reached thermal equilibrium at about 60min, eventually, the bal-
ance temperature approximately 58.4±0.2 °C. After the optimization,
the internal heat source tends to be stable basically around 52min, the
final temperature maintains at 52.0±0.1 °C. For enhancement devices,
the power consumption is basically the same as the basic type, but
the shape envelope is larger, so the internal heat source temperature
is slightly lower than the basic type. It achieved the stable state after
80min, and the final temperature approximately in 56.5±0.2 °C. After
the process optimization, the internal heat source temperature approxi-
mately achieved the balance after 70 min, the final stable state temper-
ature is 49.1±0.1 °C.

In Fig. 8(b), when the internal heat source is operating, the power
consumption is about 2W higher than that of standby, operating mode is

carried out according to working 5min, standby 15min. Before the basic
equipment is optimized, the temperature peak is stable at 64.0±0.1 °C
after about 4 cycles in this operating mode. After optimization, the de-
vice starts to rise from the standby stable temperature (approximately
52.0 °C). The stable peak also reached at the fourth cycle, stable around
55.5±0.1°C. For the enhanced type, the pre-optimized temperature be-
gins to stabilize the cycle at 60min, the peak value finally stabilizes in
61.9±0.2 °C. After optimization, the temperature is basically stable in
the second cycle, with a peak temperature of 53.6±0.2 °C.

Fig. 8(c) represents the highest point on the surfaces of the two
devices in standby. For basic device, the steady state temperature be-
fore optimization is 46.2±0.1°C, and the optimized temperature is about
39.6 °C. Meanwhile, the enhancement type has a steady temperature of
43.6±0.2 °C when initialization, and after optimization, the steady state
temperature reduced to 38.7±0.2 °C.

In Fig. 8(d), the temperature change on the surface of the device
in operating mode was described. In alternating operating mode, the
peak temperature of the basic equipment before optimization reached
50.3±0.1 °C. After optimization, the maximum temperature of the peak
stabilized at 43.3±0.1 °C. For enhancement device, the peak tempera-
ture before the equipment optimization reaches 47.1±0.1 °C, after which
the stable peak temperature kept 42.7±0.2 °C (Table 3).

The test results in Fig. 8 showed that, there has a significant tem-
perature reduction before and after the optimization of the device, the
steady-state measuring point data as shown in Table 4.

Table 4 shows that, whether basic or enhancement, the higher the
temperature is, the better the temperature drop effect of heat source
through optimization method is, two type devices were cooled by 8.5 °C
and 8.3 °C, respectively, in operation. In addition, by optimizing the de-
sign, in standby state, the temperature of the surface of the equipment
is reduced by 5–7 °C (kept at about 39 °C), basically close to the surface
temperature of the human body, it can be satisfied with the comfort of
use. In short-term operating mode, the surface temperature of the device
increases rapidly. Although the temperature is 4–7 °C lower than initial-
ization, further structural optimization improvements stilled required to
achieve good comfort.

In addition, the test results are compared with the simulation results
to verify the accuracy of the simulation analysis, as shown in Fig. 9.

In Fig. 9, only the standby mode data compared, there was no com-
parison of the operating mode data. Because the device was in a "work-
standby" loop operating state in operating mode, the temperature peak
tested was only in the operating mode, it did not reach the steady peak in
the working mode. From the simulation and test results in Fig. 9, we can
see that: (1) compared with the actual test results, the simulation anal-
ysis before and after optimization and the error of the measured results
showed within 2°C, the results have good consistency. This also showed
that simulation analysis is still one of the main ways to achieve efficient
cooling of electronic components, through the conformity modeling of
the physical object, it is possible to accurately predict the temperature
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Fig. 8. Performance test curves before and after optimization of two model devices.

Table 3

Comparison of simulation results before and after terminal standby optimization.

NO. Type Content Position Initialization/°C Optimization/°C

1 Basic Internal maximum temperature Amplifier chip 59.5 53.4

2 Internal minimum temperature PCB board 46.3 42.2

3 Surface maximum temperature Upper front shell 46.5 39.7

4 Surface minimum temperature Bottom of front shell 43.4 37.0

5 Enhancement Internal maximum temperature Amplifier chip 57.5 47.7

6 Internal minimum temperature PCB board 44.5 39.7

7 Surface maximum temperature Upper front shell 44.2 39.1

8 Surface minimum temperature Bottom of front shell 37.8 36.7

Table 4

Comparison of test and simulation results before and after equipment optimization.

No. Type Position State initialization/°C Optimization/°C Temperature drop value /°C

1 Basic Heat Source Standby 58.4 52.0 6.4

3 Heat Source Work 64.0 55.5 8.5

4 Shell Standby 46.2 39.6 6.6

6 Shell Work 50.3 43.3 7

7 Enhancement Heat Source Standby 56.5 49.1 7.4

9 Heat Source Work 61.9 53.6 8.3

10 Shell Standby 43.6 38.7 4.9

12 Shell Work 47.1 42.7 4.4

field for equipment. (2) The temperature at the thermal source location
of the equipment was higher, and the temperature dropped more obvi-
ous after optimization. The temperature of the enhancement device in
each operating condition reflected lower than that of the basic type, no
matter before or after the optimization, this showed that, under certain
conditions of the internal heat source, it is one of the effective ways to
improve the thermal heat by increasing the thermal area of the device
surface.

5. Conclusion

This paper focused on the problem of the high surface temperature
when used by a handheld high-power communication equipment, A flex-
ible nanocomposite material with high thermal flow density heat dissi-
pation was used, the material have been applied to the spacecraft and
satellite platforms before. An efficient thermal guide path was estab-
lished without changing the structure of the inside equipment. Through
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Fig. 9. Test and simulation analysis before and
after two device optimizations under different
operating conditions.

thermal resistance network analysis and simulation analysis, the rapid
heat transfer can be achieved. Through thermal resistance network anal-
ysis and simulation analysis, local thermal resistance can be greatly re-
duced, and rapid heat transfer can be achieved. In addition, the exper-
imental verification of two working modes of the optimized equipment
was carried out, obtained the conclusion to be as follows.

(1) Using network thermal resistance model analysis, it is very conve-
nient and clear to analyze the improvement of local thermal resis-
tance. Based on the design of flexible nanocomposite materials, lo-
cal thermal resistance of the original equipment can be reduced by
about 180 times, it can be satisfied with the demand of the efficient
heat dissipation of local heat source. However, for complex thermal
resistance networks with multi-dimensional, multi-heat source and
multi-working conditions, simulation software was used for simulat-
ing analysis.

(2) Simulation analysis accurately determines the temperature improve-
ment of the equipment after optimization. Compared with the test
results, the temperature of the heat source obtained by the simula-
tion and the temperature error of the shell surface were controlled
to within 2 °C. This analysis method can be used to quickly prejudge
and evaluate the thermal capacity of equipment optimization, and
can provide the technical guidance for the thermal design of high-
power electronic equipment.

(3) The experimental test fully verified the accuracy of simulation anal-
ysis and the high-performance heat transfer capability of flexible
nanocomposites. Both devices have been verified and analyzed by
standby and working modes, the core temperature is cooled by about
8.5 °C, and the surface temperature is reduced by 5–7 °C, respec-
tively. The surface temperature is maintained at about 39 °C in
standby, which can content the comfort and reliability requirements
of hand-holding.

(4) Under the condition of limited space and no-changing the equipment
structure, flexible nanocomposites with ultra-high thermal conduc-
tivity can improve the problem of insufficient thermal capacity of
equipment. In the optimized design of this equipment, due to the
limited space inside the equipment, the equipment in the short-term
operation, although the pre-optimization temperature is reduced by
8.5 °C, the temperature still reached about 43 °C. If the comfort of the
equipment continues to be improved in operating mode, the subse-
quent combined structure design is required to be further improved
to realize the efficient cooling of the equipment surface to the envi-
ronment.
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Past research has shown that occupancy information can be used to reduce building energy consumption through
occupant-based controls and by mitigating wasteful occupant behavior. In this study, we investigate the dynamic
relationship between WiFi connection counts (as a proxy to occupancy) and building electricity consumption
across four building typologies (office, lab, health center, and library). Our findings based on one year of data
show a strong positive linear correlation between electricity consumption and WiFi count across all four building
when the building is in operation. The data exploration also indicates higher interactions between occupants with
the plug and lighting loads in office and lab space types as compared to in a health center and a library. Next,
using principal component analysis (PCA) for feature extraction followed by Density-based spatial clustering
of applications with noise (DBSCAN), we show that distinct clusters could be generated, characterized by an
increase in the between-cluster variance and smaller within-cluster variation. Lastly, we apply linear regression
to manifest how the clustering results can be used to better model the variables.

1. Introduction

The building and construction sector is responsible for the largest
proportion of both final energy use (36%) and energy-related CO2 emis-
sions (39%) [1]. A major source of rising energy use and emissions by
the global building stock is electricity, the use of which has increased
more than 19% between 2010 and 2018. One of the barriers to improv-
ing building energy efficiencies is understanding the factors causing the
significant discrepancies that often exists between what the building
was designed for, and its real energy use [2]. Occupant activities and
behavior has been recognized to be a major contributor to the variabil-
ity around building energy use [3,4]. As green building energy codes
and standards become more stringent with an increasing emphasis on
passive design and more efficient active systems, occupant behavior is
expected to have a rising influence on building energy performance.

Occupancy information can be used to detect and mitigate wasteful
behavior. For instance, 35.5% energy saving potential was identified by
occupant activity recognition using power meters, motion sensors, and
light sensors [5]. Masoso and Grobler [6] found that more energy was
consumed during non-working hours as a result of wasteful occupant
behavior of leaving lights and equipment on, and partly due to poor
zoning and controls. This illustrates how simple behavior change iden-
tified with occupancy monitoring can be used to reduce energy wastage
significantly. In addition, it also exemplifies the importance of intro-

∗ Corresponding author.
E-mail address: adrian.chong@nus.edu.sg (A. Chong).

ducing occupant-centric design to existing energy codes and standards
[7]. Occupancy information has also been used to proportionally control
building systems (lighting, HVAC, etc.). The use of occupancy informa-
tion for building operation and controls has been studied extensively
and ranges from simple presence-based switching of lighting systems
and demand control ventilation to more complex frameworks involving
model predictive control or reinforcement learning [8–10].

Currently, occupancy detection in buildings is usually achieved by
monitoring indoor CO2 levels or through passive infrared (PIR) sensors.
CO2 sensors are often used for demand control ventilation, where ven-
tilation or fresh air is supplied to the space based on CO2 ppm levels.
However, detection time using CO2 sensors was found to be too slow for
use in commercial buildings [11], resulting in occupants being in a state
of discomfort. PIR sensors are typically used for occupancy-based light-
ing controls. Past researches have shown that occupant-based controls
are able to provide lighting energy savings of up to 30% [12]. However,
PIR sensors require a direct line of sight to achieve proper motion detec-
tion [13]. Therefore, it is prone to “false-off” (i.e., lights being turned
off despite the room being occupied) [14]. Electricity and water con-
sumption data has also been used to enable more efficient occupancy
inference [15].

Melfi et al. [16] defined 16 combinations of spatial, temporal and oc-
cupant resolution (Fig. 1), where the resolution required depends on its
application. An extensive sensor network can help improve the accuracy
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Fig. 1. Different resolution of spatial, temporal, and occupancy resolution [16].

in occupancy number detection [17]. 80–95% accuracy was achieved
using CO2, lighting, temperature, humidity, and presence sensors[18].
However, the deployment of sensors to directly measure occupancy is
synonymous with high installation cost and the need to maintain the
associated data acquisition system continuously. Put differently, there
is a trade-off between cost, accuracy, and resolution.

In commercial non-residential buildings, WiFi activity provides an
opportunity for detecting/monitoring occupancy count without any
modification to the building’s existing infrastructure other than the col-
lection and processing of data. The effectiveness of using WiFi data to
detect and predict building occupancy has been demonstrated through
case study buildings [19–21]. Although accuracy in measuring occu-
pancy within the building was high, floor and room level accuracy were
significantly lower due to devices being connected to different WiFi ac-
cess points that are not in the same area as the occupant [16]. WiFi
connection counts have also been shown to be positively correlated and
able to partially explain the trends observed in building electricity con-
sumption [22].

WiFi signal has been used as implicit occupancy sensors for the pur-
pose of HVAC and lighting control. Zou et al. [23] showed that WiFi-
based occupancy control was able to provide more than 90% and 80%
lighting energy savings as compared to static schedules and passive in-
frared (PIR) based control respectively [23]. For HVAC, Balaji et al.
[24] demonstrated savings of 17% by leveraging the existing WiFi net-
work infrastructure to actuate the HVAC system. Wang et al. [25] pro-
posed an occupancy-link energy-cyber-physical system that incorporates
occupancy information by actively scanning WiFi connection requests
and responses. The proposed framework was able to achieve about 26%
savings in cooling and ventilation energy consumption.

Although there are existing literature investigating the relationship
between occupancy and a building’s energy usage, the conclusion from
most studies were based on a single typically office or residential case
study building. However, occupancy profiles may have distinct features
depending on the building typology. For instance, one would expect a
library or a concert hall to have higher variability as compared to an of-
fice building that typically plateaus during office hours. Therefore, the
purpose of this study is to explore and understand the dynamic relation-
ship between building electricity consumption and WiFi count across
four different building typologies and functions. The four building case
studies include an office, a lab, a health center and a library. We pro-

Fig. 2. Normalized twenty-four hour profile of electricity energy consumption
and WiFi count for weekdays (excluding public holidays) across four building
with different typologies and functions.

pose a new integrated clustering approach to better understand and de-
fine the usage patterns across the four building typologies. Based on the
clustering results, we apply liner regression models to further interpret
the relationship and demonstrate the benefit of a better understanding.

2. Case study

A case study approach is used to examine the relationship between
WiFi count (occupant presence) and building electricity consumption
across four buildings located on the campus of National University of
Singapore. Table 1 summarizes the dataset used in this study. The four
buildings were primarily selected to have different typologies and func-
tions, including an office, a lab or laboratory, a health center, and a
library. The heating, ventilation, and air-conditioning (HVAC) system
for all four buildings is a variable air volume system served by a cen-
tral district cooling system. Given Singapore’s tropical climate, there is
no heating required. To allow for inter-comparison across buildings, the
data collected from each of the four buildings are from the same time
period (1 January 2018 to 31 December 2018) and consists of the fol-
lowing:

• Hourly total building electricity consumption that is made up of
equipment or plug and process energy, lighting energy, and air han-
dling unit (AHU) fan energy consumption. Note that the electricity
consumption data investigated in this study does not include the en-
ergy consumption from other HVAC systems aside from the AHU fan
energy.

• Hourly number of WiFi connections in the building. The number of
connections serves as an implicit measurement of the hour to hour
variations in occupant count, and have been shown to exhibit a sim-
ilar trend to the number of building occupants [16]. Therefore, it
serves as a suitable estimate for the hour to hour variation of occu-
pant presence.

3. Exploratory data analysis

Figs. 2 and 3 show the variation in the number of WiFi count and
building electricity consumption aggregated over a 24-h profile respec-
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Table 1

Summary statistics of dataset used in this study.

Building type Floor area Data Unit n Missing / Erroneousa Meanb (5th, 50th, 95th) percentileb

Office 5335 m2 Electricity Energy kWh 8748 0 34.8 (20.4, 27.1, 59.6)

WiFi Count No. 8228 532 94 (5, 40, 307)

Lab 25,523

m2

Electricity Energy kWh 8725 35 1124 (998, 1093, 1299)

WiFi Count No. 8063 697 161 (36, 97, 447)

Health center 3708

m2

Electricity Energy kWh 8740 8 36.0 (12.25, 16.75, 95.75)

WiFi Count No. 8395 365 7 (5, 46, 200)

Library 26,036

m2

Electricity Energy kWh 8476 272 191.5 (58.0, 99.5, 401.7)

WiFi Count No. 8063 697 394 (23, 91, 1805)

a Erroneous values include negative values and values that were too large to be correct (e.g. values that are more than 1000
times larger than the mean value).
b Values are computed after removing missing and erroneous values.

Fig. 3. Normalized twenty-four hour profile of electricity energy consumption
and WiFi count for weekends (including public holidays) across four building
with different typologies and functions.

Table 2

Correlations between building electricity consumption
and WiFi connection count.

Building Type Whole Year Weekdays Weekends

Office 0.93 0.92 0.45

Lab 0.88 0.88 0.48

Health Center 0.67 0.65 0.29

Library 0.74 0.72 0.66

tively for weekdays and weekends. The profiles were normalized by
diving by maximum so that all data can be compared over the same
range [0, 1] without losing the relative comparisons of their baseload
ratios [26]. An initial comparison revealed that building electricity con-
sumption and WiFi count tends to follow similar trends, with higher
similarity observed in the office building as compared to the other three
buildings (lab, health center, and library). As shown in Table 2, electric-
ity consumption is positively correlated with WiFi count across all four
building case studies, with the correlation being more significant during
the weekdays (0.65–0.92) as compared to the weekends (0.29–0.66). In
addition, WiFi data from the office and the lab building have a higher
linear correlation (0.88–0.93) with electricity consumption as compared

Fig. 4. Scatter plot of hourly electricity against WiFi count for weekdays in
blue, Saturdays in orange, and Sundays (including public holidays) in yellow.
For better visualization, we illustrate with a random selection of 500 data points.

to the health center and the library building (0.67–0.74). This is further
illustrated in Fig. 4, which shows a strong positive linear relationship be-
tween electricity consumption and WiFi connection counts for the office
and the lab building. In contrast, two data clusters with a weak positive
relationship between the two variables are observed for the health cen-
ter. The library shows more diversity with several data clusters and a
large proportion remaining constant over time. As depicted in Fig. 5, this
is due to a relatively constant electricity consumption during operating
hours.

The variations in WiFi count for the office, lab, and health center
are mostly similar to those that one would expect from occupancy in
these buildings: increasing in the morning, stabilizing during working
hours with a slight dip around lunch, a decrease towards the evening,
and a flat profile during the weekends (see Figs. 2 and 3). The office and
lab show the smallest electricity and WiFi count variance within each
hour, indicating that the daily occupancy profiles tend to remain the
same throughout the year. Notably, the lab building shows considerably
higher baseload ratio (0.75) as compared to the other three buildings
(approximately 0.25), which can be attributed to the high equipment
load that is typical of laboratories.

It comes as no surprise that the library building has the largest vari-
ance in hourly WiFi count, indicating significant diversity in occupancy
profiles over the year. An investigation revealed that this is brought
about by differing operating hours (See Fig. 5): 8 a.m. to 10 p.m. during
the semester, 8:30 a.m. to 6 p.m. during the vacation, 10 a.m. to 5 p.m.
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Fig. 5. Breakdown of profiles based on library building operating hours.

on Saturdays and closed on Sundays and Public Holidays. The hourly
variability previously observed in Figs. 2 and 3 is also significantly re-
duced when segregating the profiles by the building’s operating hours.
From Fig. 5, it can be observed that the electricity consumption of the
library plateaus during its operating hours. Conversely, the WiFi data
shows a different trend that is consistent across the days that the library
is operating: increases at a decreasing rate in the morning until it peaks
in the afternoon (with no dip during lunch), and decreases towards the
evening. Such a profile is also expected for occupancy in a typical li-
brary. Correspondingly, this provides an indication that lighting and
equipment loads are not as dependant on occupancy as the other build-
ing types. This observation is not unusual given that occupants have less
control over the lights and contribute less to the equipment loads in a li-
brary as compared to an office building. Despite the large proportion of
the electricity consumption remaining constant over time for the library
building, a significant positive linear correlation is still found with WiFi
count (Table 2).

4. Clustering analysis

As mentioned in the preceding section, the linear correlation be-
tween electricity consumption and WiFi count is significantly lower for
the weekends as compared to the weekdays (Table 2). However, sepa-
rating the weekends from the weekdays did not result in a stronger lin-
ear relationship between electricity consumption and WiFi count. This
observation is consistent across all four buildings, suggesting that sepa-
rating the dataset into weekday and weekend data does not result in bet-
ter explainability of the variance in electricity consumption using WiFi
data. From Figs. 2 and 3, it can be seen that the variance remains for
both WiFi count and electricity consumption even after separating the
weekdays and weekends. This indicates the possibility that the buildings
have different usage patterns during certain periods of the year.

Subsequently, we apply clustering methods [27] to identify and
group periods with similar patterns. Clustering methods have been
widely used to extract profiles of electricity consumption [26] and occu-
pant number [28]. The present work differentiates from existing studies
by using both electricity consumption and WiFi count data, which im-
proves the clustering performance. Z-score standardization is applied so
that the data has a mean of zero and unit variance. As part of the study,

we also evaluate different feature engineering and clustering methods
as summarized in Table 3 with details as follows:

Case 1 k-means [29] algorithm was applied to a concatenated 48 fea-
ture dataset. The 48 features is a concatenation of a 24-h elec-
tricity consumption profile (24 features) and a 24-h WiFi data
profile (24 features). We concatenate electricity consumption
and WiFi profiles because it provided more distinct clusters,
suggesting that the two profiles together can better define the
buildings’ daily usage pattern.

Case 2 Similar to case 1 but using the Density-based spatial cluster-
ing of applications with noise (DBSCAN) [30] algorithm for
the clustering. Unlike distance-based k-means, DBSCAN is a
density-based clustering algorithm that was designed to be
able to identify clusters of arbitrary shapes in datasets con-
taining noise and outliers.

Case 3 Similar to case 1 but using the k-shape algorithm [31] for
the clustering. The k-shape algorithm considers the shapes of
time series in the clustering by using a normalized version of
the cross-correlation measure as its distance measure. This is
a newly proposed clustering method that emphasizes on the
shape-based similarity of time series data.

Case 4 Similar to case 1 but using Hierarchical Density Based Clus-
tering (HDBSCAN) [32] for the clustering. It extends DBSCAN
by converting it into a hierarchical clustering algorithm, and
then using a technique to extract a flat clustering based in the
stability of clusters.

Case 5 Similar to case 1 but principal component analysis (PCA) is
applied to remove noise and redundancy in the dataset. Only
the first two principal components were used for the clustering
since they explained more than 95% of the variance.

Case 6 Similar to case 5 but using the Density-based spatial clustering
of applications with noise (DBSCAN) [30] algorithm for the
clustering.

The Calinkski Harabasz (CH) Score [33] was used to evaluate clus-
tering performance on both the electricity andWiFi datasets. CH Score is
also known as variance ratio criterion (i.e., the ratio of between-cluster
variance to within-cluster variance). Therefore, a higher CH score relates
to more distinct clusters. However, it is worth noting that the absolute
value of CH score is affected by the scale of the profiles, and therefore,
is only comparable for the same measurements of the same building.
From Table 3, case 6 (PCA followed by DBSCAN) gave the highest CH
Scores in four out of the eight cases, and comparatively high CH Scores
in the remaining three cases. Fig. 6 shows the clustering results of case 6.
Based on the clustering results, the following observations can be made.
First, WiFi count profiles contain significantly higher within-cluster vari-
ability as compared to the electricity consumption profiles, which is in
agreement with the stochasticity in occupant behavior demonstrated in
previous studies [4]. Second, using PCA for feature extraction led to
more distinct clusters (see first column of Fig. 6), and higher CH scores
(Table 3). Third, DBSCAN outperforms k-means by excluding insignifi-
cant outliers and identifying the minor profile clusters (such as cluster
3 in lab and health center). More detailed comparison and discussion
about different profile clustering methods can be found in Zhan et al.
[34].

Fig. 7 shows the clustering results in a calendar map format. The
colors represent the corresponding clusters illustrated in Fig. 6. From
Fig. 7, it can be seen that each cluster comprises of profiles over a spe-
cific period in the year. The clusters and corresponding periods for each
building, as well as the correlations during the periods, are summarized
in Table 4. A comparison of the cluster centroids (Fig. 6) and when they
occur temporally (Fig. 7) provides deeper insights into the relationship
between total WiFi connection counts and total building electricity con-
sumption, as follows:

• For the office, the lab and the health center, there is a period when
the number of WiFi connection is significantly higher or lower than
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Table 3

Summary of Calinski Harabasz (CH) Scores with/without principal component analysis (PCA)
and different clustering methods.

Case Clustering Algorithm PCA Measure Calinski Harabasz Scorea

Office Lab Health Center Library

1 k-means No WiFi 1267 1396 354b 599

electricity 1657 347 1149 1259

2 DBSCAN No WiFi 1060 1571 111 217

electricity 2025 404 843 1388

3 k-shape No WiFi 767 1439 90 496

electricity 968 394 184 206

4 HDBSCAN No WiFi 503 1063 229 116

electricity 2767 421 707 1005

5 k-means Yes WiFi 1124 1299 282 655

electricity 1626 244 1496 368

6 DBSCAN Yes WiFi 1705 1730 184 587

electricity 3040 418 1684 756

a Calinski Harabasz (CH) Score is an effective measurement when evaluating clustering per-
formance of the same type of measurement in the same building [33].
b Highest scores are highlighted in bold.

Fig. 6. Clustering results. Left column: scatter plots of the first principal component for electricity consumption against the first principal component for WiFi
connection counts; Middle column: Profile plots for WiFi connection counts; Right column: Profile plots for electricity consumption.The color across all plots indicate
the corresponding cluster that they belong to.
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Fig. 7. Clustering results visualized in calendar maps. The blanks are missing data/cluster outliers.

Table 4

Summary of the clusters, and their corresponding periods and correlation between building electricity
consumption and WiFi connection counts. Cluster numbers are color coded following the clustering
results presented in Figs. 6 and 7.

Building type Cluster no. Corresponding period Correlation

Office Weekdays beyond semester 2 0.94

All weekends and holidays 0.45

Weekdays in semester 2 0.95

lab Most weekdays 0.89

All weekends and holidays 0.49

Weekdays from late January to early March 0.92

Health

Center

Most weekdays 0.68

All weekends and holidays 0.15

Weekdays in last two weeks of semester 2 0.83

Library Saturdays during semester and weekdays during vacation 0.86

All Sundays and holidays 0.11

Weekdays during semester 0.78

Saturdays during vacation 0.79
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Table 5

Root mean squared error (RMSE) and coefficients of linear regression with (w/) and without (w/o) clustering. Cluster
numbers are color coded following the clustering results presented in Figs. 6 and 7.

Building Type RMSE (kWh) Coefficient Intercept

w/o w/ w/o w/o

Office 5.69 4.49 0.13 0.15 0.08 0.11 N/A 22.45 23.19 21.66 23.12 N/A

Lab 46.64 43.49 0.62 0.58 0.54 1.08 N/A 1021 1035 1016 989 N/A

Health Center 23.37 20.53 0.33 0.35 0.02 0.26 N/A 12.93 17.36 14.31 1.86 N/A

Library 92.65 70.49 0.18 0.54 0.03 0.14 0.79 118.1 76.04 65.83 150.3 62.06

the rest of the year (blue cluster in Figs. 6 and 7), while the electricity
consumption remains at a similarly high level.

• An increase in linear correlation in clusters representative of operat-
ing days (e.g. weekdays) can be observed. A corresponding decrease
in linear correlation in clusters representative of non-operating days
(e.g. weekends and holidays) was also observed. This comes as no
surprise because the portion of the WiFi data that has a stronger re-
lationship with electricity consumption (operating days) is now sep-
arated from the portion with a weaker correlation. Consequently,
clustering the profiles as a pre-processing step for applications like
energy prediction or occupancy schedule extraction may help im-
prove prediction or modeling performance.

To demonstrate the improved explainability brought by clustering,
linear regression is applied to model the relationships between elec-
tricity consumption and occupants. While linear regression is a simple
model, its parameters can be physically interpreted. The coefficient rep-
resents by how much occupants affect electricity consumption, and the
intercept implies the unaffected baseload. Table 5 summarizes the re-
sults with and without the clustering, including Root mean squared er-
rors (RMSE) and the model coefficients. Based on RMSE, the model per-
formance of all buildings is improved by fitting within each clustered
period. The change of coefficients and intercepts illustrates the reason.
For example, the lab has a significantly higher coefficient for cluster 3
than the other 2, indicating higher per capita consumption. Also, the
library has an around twice larger intercept, or baseload, on weekdays
during the semester than other days. In summary, the clustering effec-
tively separates different interrelationships and improves model perfor-
mance.

5. Discussion

This paper focuses on the relationship between building electricity
consumption and WiFi connections counts (as a proxy of occupancy).
Variations in total WiFi connection counts and total building electricity
consumption tend to follow similar trends (Figs. 2 and 3), with some
differences between the four case study buildings (office, lab, health
center, and library).

Opportunities for energy savings can be identified by comparing the
corresponding cluster centroids for electricity consumption and WiFi
connections (Fig. 6) and when they occur temporally (Fig. 7). For exam-
ple, for the office, the lab, and the health center, there is a period when
the number of WiFi connections is significantly higher or lower (blue
clusters in Fig. 6) than the profile you would expect on a typical operat-
ing day (pink clusters in Fig. 6). However, the corresponding electricity
consumption is similar between the two clusters. A similar situation is
also observed for the library when the electricity consumption remains
high as the WiFi connection gradually increase and decrease. Possible
reasons include (1) the building is being operated on a static schedule
and/or (2) poor zoning and controls leading to energy wastage. The
mismatch between occupancy and electricity consumption indicates an
opportunity to conserve energy by proportionally operate building sys-
tems based on occupancy. Past studies have shown that occupant-based

controls can bring about reductions in lighting energy consumption by
about 30% [12] and HVAC energy consumption by about 20% [24,25].

Fig. 6 also clearly shows that the lab building has a very high
baseload compared to the other buildings despite being unoccupied
(WiFi connections are close to zero). This might be due to equipment
that are required to run continuously, indicating opportunities for saving
energy by switching these equipment to more energy-efficient ones. The
high base load might be due to wasteful occupant behavior [6] and/or
poor equipment efficiencies causing a performance gap [35]. However,
it should be noted that both studies were on office buildings and thus
might not be directly applicable.

Results from this study indicate that WiFi connection counts have a
stronger positive correlation with building electricity consumption dur-
ing operating hours as compared to when the building is not in operation
(Table 4). This observation is consistent across all building types and
consistent with the study by Melfi et al. [16], where a higher correlation
was found for weekdays as compared to weekends. The strong positive
correlation is also in agreement with the study by Martani et al. [22].
The office and the lab showed a higher correlation between WiFi count
and electricity consumption as compared to the health center and the li-
brary (Table 4). The electricity consumption in this study only includes
equipment, lighting, and AHU fan consumption. Therefore, a possible
reason for the higher correlation is the interactions between the plug
and lighting loads and the occupants. Put differently, occupants in of-
fices and labs have more influence over the plug and lighting loads than
in the health center and library.

It is acknowledged that WiFi count is not an exact measurement
of occupant number [16]. Potential problems include: (1) inconsistent
WiFi connectivity resulting in devices losing connections to APs leading
to false negatives (devices not being counted even though it is within
the building), and (2) overlapping access point (AP) coverage resulting
in devices being connected to APs that are not in the same area as the oc-
cupant. However, overlapping AP coverage is not an issue in this study
because the focus is on aggregated WiFi connection counts, which has
been shown to be a good enough estimate for whole building analysis
[19].

6. Conclusion

In this paper, we explored and analyzed the dynamic relationship
between total WiFi connection count (as a proxy for occupancy) and to-
tal building electricity consumption across four different building types
(office, lab, health center, and library). We showed that

• Using PCA for feature extraction followed by DBSCAN for cluster-
ing generated distinct clusters with the highest CH-scores (ratio of
between cluster variance to within-cluster variance). This led to
stronger positive linear correlation across all four building types on
days the building is in operation.

• The proposed clustering approach could be used as a preprocessing
step to better model the variables using methods like linear regres-
sion.
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• Clustering using both WiFi connection counts and electricity energy
consumption data provided more distinct profiles that better define
a building’s energy usage patterns.

• A higher correlation was observed across all four building when the
building is in operation. Additionally, a stronger relationship was
found in buildings where occupancy does not deviate much (office
and lab) as compared to buildings where higher variability in occu-
pancy is expected (health center and library).

• WiFi data provide levels of detail about occupant presence. By an-
alyzing WiFi connection counts (as a proxy of occupant presence)
with electricity consumption, indications of energy saving opportu-
nities can be identified. Examples include energy saving potential
from introducing occupant-centric controls as well as opportunities
to mitigate energy wastage when the building is not in operation.

The similarity in trends and the high positive correlation with elec-
tricity consumption suggest that WiFi connection count is suitable for
modeling the hour to hour variations in electrical loads. Since relative
changes in electricity consumption are at least partially a function of
occupant presence, the rationalization of the WiFi profiles also suggests
that the number of WiFi connections might be a suitable indicator of
building occupancy. The advantage of using WiFi data lies in not need-
ing any modifications to the existing building infrastructure other than
the collection and processing of data.
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a b s t r a c t

Research on the window operating behavior of offices is of great significance for reducing building energy con-
sumption and improving indoor comfort. The open-plan office is a common office form that involves a large
number of people and a complex staff composition. The window operating behaviors in open-plan offices are
also random and various. This study took three open-plan offices with different situations (area, office type, staff
composition, etc.) as an example, which provides a new perspective on how people behave differently when
opening or closing windows. The window operating behaviors in two typical seasons (summer and transition
seasons) were recorded and analyzed. The occupants’ schedules and influencing factors of window operating
behavior were investigated by questionnaire surveys. In addition, the indoor environmental parameters, occu-
pancy situation, and on-off statuses of windows and air conditioning were acquired through field measurements.
Furthermore, the differences in window operating behaviors in the three open-plan offices were compared from
the perspectives of influencing factors, duration of the window on-off statuses, and cause of window control ac-
tions, among others. In addition, Spearman Correlation Coefficient was used to analyze the ranks of the candidate
motivations for window operating behaviors. The preliminary results show that influenced by the personnel com-
position, type of air conditioner and adjustable degree of windows, the window operating behaviors of different
office buildings have larger discrepancies than that in the same building. However, there were some common
characteristics in the window regulation behaviors of the three open-plan offices: they were generally influenced
by the coupling of environmental factors, schedule factors, and equipment factors. This study reveals that when
expand the research object from a single building to multiple buildings, more difficulties and challenges would
be involved into behavior research.

1. Introduction

The energy consumption of office buildings accounts for approxi-
mately 20% of the total energy consumption of global buildings [1].
Therefore, it is important to reduce the energy consumption of office
buildings while ensuring indoor comfort. According to the study of IEA
Annex 53, the energy consumption of office buildings is mainly af-
fected by four factors, namely meteorological parameters, envelope per-
formance, equipment performance, and occupant behavior [2]. Among
the various factors influencing building energy consumption, occupant
behavior has been of great concern [3–5]. As one of the most com-
mon occupant behaviors in buildings, window operating behavior di-
rectly affects the indoor thermal environment and indoor air quality
[6]. Therefore, window operating behavior has an important impact
on indoor comfort and building energy consumption [7–9], and it is

∗ Corresponding author.
E-mail address: 101012014@seu.edu.cn (X. Zhou).

of great significance to conduct in-depth analysis and research on this
behavior.

In order to effectively reduce the energy consumption of buildings,
natural ventilation and mixed ventilation have been widely used in
buildings in summer, even though air conditioning (AC) has been popu-
larized [10]. Karin Schakib Ekbatan et al. [11] found that outdoor tem-
peratures as well as indoor air temperatures influence window open-
ing by monitoring 35 offices. D’Oca and Hong [12] analyzed a data set
with measured indoor and outdoor physical parameters and human in-
teraction with operable windows in 16 offices. They found that indoor
air temperature, outdoor air temperature, time of day, and occupancy
presence are the drivers for window operating behaviors. Rijal et al.
[13] found that the proportion of windows open is related to the season
and is a function of the indoor and outdoor temperature. After conduct-
ing a field study of the manual control of windows in 21 offices in Ger-
many, Herkel et al. [14] found that user behavior has a strong correla-

https://doi.org/10.1016/j.enbenv.2020.07.007
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2666-1233/Copyright © 2020 Southwest Jiatong University. Publishing services by Elsevier B.V. on behalf of KeAi Communication Co. Ltd. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Fig. 1. Technical route.

Fig. 2. Office plans.

Table 1

Basic information of the three offices.

Office A Office B Office C

Location University campus Residential building Commercial office area

Area (m2) 56 110 172

Orientation West South East

Window type Sliding window Sliding window Top-hung window

Window location West/North South/North East/West/South

AC system Split AC Split AC FAN COIL + OA

Occupants Graduates(10 persons) Graduates and construction practitioners (20 persons) Construction practitioners (35 persons)

Notes: AC (Air Conditioning); OA (Outdoor Air).

Fig. 3. Measurement instruments.
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Fig. 4. Measurement point locations.

Fig. 5. Frequency of the presence of office workers in the three offices.

tion with the percentage of open windows and the time of year, outdoor
temperature, and building occupancy patterns. However, even if the ex-
ternal factors affecting the window opening behavior are the same, the
occupants of the building will still have different operating behaviors
[15]. Wei et al. [16] explored the effects of non-environmental factors
and found that season, floor level, gender, and personal preference had
a statistically significant effect on the window operation in an examined
building. Zhang and Barrett [17] found that the window orientation pro-
duces distinctly different control responses owing to solar radiation and
the prevailing wind direction.

Many data driven methodologies and models have been developed to
obtain new insights on the window operating behaviors [18-20]. Logit
regression and normal distribution functions were combined to repli-
cate the diversity of window operating behavior in Canadian residential
buildings [21]. D’Oca and Hong [12] used two kinds of data mining
approaches to discover window operating patterns, and four aspects of
window operations were clustered in the study. Li et al. [22] pointed
out that the correlation between occupant behavior and window op-
erating has not been well explored. Logistic regression and tree-based
data-driven models were used to analyze the importance of influenc-

ing factors on window operating behavior. Chen et al. [23] applied Cox
model to consider the influence of environmental factors and window-
opening durations on window operating behaviors. In [24], Reliable
prediction on occupants’ actions was obtained by using logistic regres-
sion by taking into account summer and winter conditions. Sun et al.
[25] analyzed the influencing factors motivating behavior, defined the
window-opening behavior patterns by using cluster and logistic analysis
and formed the behavioral profiles that were used in building perfor-
mance simulation software. Wei et al. [26] compared three data min-
ing method, logistic regression model, Markov model, and ANN model
as the methodologies to model window opening behaviors in office
building.

Current research on window operating behavior mainly focuses on
single offices. However, few studies have compared the window oper-
ating behaviors of offices in different buildings. The window operating
behavior in a single office is mainly affected by individuals, while the
window regulation behavior in a multi-person office is more random and
complex owing to the large number of people and the different compo-
sition of occupants. In view of the above shortcoming, a comparison of
the window operating behaviors in open-plan offices in different build-
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Fig. 6. Outdoor temperature distribution.

Fig. 7. Indoor CO2 distribution.

ings was presented in this study, which provides a new perspective on
how people behave differently when opening or closing windows.

Thus, the aim of this study is to analyze the window operating be-
havior in three open-plan offices with different conditions in Nanjing,
China. The three offices were located in different buildings with dif-
ferent occupant compositions. Subjective analysis and objective anal-
ysis were applied to understand the correlations of window operating
behavior and other influencing factors. The contribution of this study
is to expand the research object from a single building to multiple
buildings, which reveals more difficulties and challenges to behavior
research.

2. Methodology

The general approach of this study is shown in Fig. 1. The data col-
lection was composed of questionnaire survey and field measurement.
The questionnaire survey on the staff’s daily schedule and the factors
affecting the window operating behavior was conducted. Field measure-
ments recorded the indoor environmental parameters, occupancy, and
on-off statuses of the windows and air conditioners. All these data were
divided into four section, namely schedule, environmental parameters,
on-off statuses of windows and window operating actions. Correlation
analysis from subjective and objective perspectives were conducted to
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Fig. 8. Reasons for window opening and closing
based on the questionnaire results.

reveal how window operating behavior differs among different build-
ings.

3. Data collection

Three different open-plan offices in Nanjing were examined, the ba-
sic situations of which were as follows:

Office A (Fig. 2(a)) is a student studio located at a university campus,
and the office covers an area of 56 m2. Office B [27] (Fig. 2(b)) is located
in a residential area, and the area of the office is approximately 110 m2

(not including the hall). Office C (Fig. 2(c)) belongs to a commercial
office block, and the office area of 172 m2 is divided into the open of-
fice area and three single office spaces. The three test subjects adopted
a mixture of natural ventilation and mechanical ventilation. The win-
dows in office A and office B are sliding windows, which are located on
the west side and north side of office A and on the south side and north
side of office B. Office C uses a top-hung window on the east side of the
office area. For the AC system, offices A and B adopt a split AC system,
while office C applies fan coil with centralized fresh air system. In terms
of the composition of the office staff, the staff of office A is comprised of
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Fig. 9. Time distribution of the opening rate.

Table 2

Time of data collection.

Test time

Office A 2018.01–2018.06

Office B 2016.08–2016.102018.07–2018.09

Office C 2018.01–2019.01

Table 3

Opening rate comparison.

Test object Opening rate

Office A (transition season) 0.658

Office B (summer) 0.220

Office C (transition season) 0.760

Office C (summer) 0.520

graduates from universities with a total of 10 people. Office B is mainly
staffed by 20 occupants, including graduates and construction practi-
tioners. Office C is staffed by 35 construction practitioners. The basic
information of the three offices is shown in Table 1.

3.1. Questionnaire survey

The questionnaire was divided into two parts, including basic infor-
mation about the office and the method of office energy use.

Basic information about the office included the age and gender of the
occupants. The time spent in the office for different occupants was also
investigated. The calibration method was used to make records of the
room conditions of staff occupancy within one week in order to reflect

Table 4

Window operation counts.

Test object Opening Closing

Office A (transition season) 0.56 0.56

Office B (summer) 0.51 0.49

Office C (transition season) 0.17 0.16

Office C (summer) 0.21 0.21

the schedule of the occupants, which was convenient for comparative
analysis with the measured data at a later stage.

The method of energy use covered the window operating behavior
and the behavior frequency of different occupants operating the win-
dows in order to extract the active personnel of the open-plan office.
An investigation of the reasons why the staff might conduct the window
operating behavior under certain office situations was also conducted.

3.2. Measured data

In order to record the basic environmental data and occupant op-
erating behavior, this study conducted field surveys on the three open-
plan offices. In order to obtain continuous recording data, test instru-
ments with self-recording functions were used during the measurement
(Fig. 3). Among them, a magnetic switch recorder mainly recorded the
on-off statuses of the windows. The temperature and humidity of the
room were recorded by a temperature and humidity recorder, which
also helped to determine the on-off statuses of the air conditioners by
arranging them in the outlet of the air conditioners in office B. A HOBO
Occupancy/Light Logger ux90-006 was used to record the occupancy in
the room. All the measuring equipment used 5 min time steps for data

180



J. Ren, X. Zhou, J. An et al. Energy and Built Environment 2 (2021) 175–187

Fig. 10. Temperature distribution of the opening rate.

recording. The relevant test instruments were arranged approximately
0.75 m above the ground. The specific arrangement of measuring points
is shown in Fig. 4.

The data collection time of test object A was from January 2018 to
June 2018. Due to the indoor decoration in summer of 2018, no data
was collected in summer. The data for test object B was collected during
the summers of 2016 and 2018.The data collection time of test object C
is the whole year of 2018.The data collection is shown in Table 2.

4. Results and analysis

4.1. Data analysis

The dataset was analyzed from four perspective: schedule, environ-
ment parameter, On-off statuses of windows and windows operating ac-
tions.

A. Working schedule

According to the questionnaire results, we selected five graduate stu-
dents in office A, two members in office B, and six practitioners of the
construction industry in office C as the research objects. They expressed
positive control of windows in the questionnaire. Based on the measured
data, a frequency chart according to their presence in the room at each
moment was created, as shown in Fig. 5. The occupants in office A had
a relatively random working schedule with no clear regularity. This is
because office A is located in a studio in a university, and the work-
ing schedule of the staff is relatively random. Owing to the different
properties of work, the two members in office B had different work and

rest times in the room. The graduate students (person 2 in office B) had
a clear lunch and dinner break, but left at relatively random times at
night. Practitioners in the construction industry (person 1 in office B)
had fixed arrival times at the office but random departure times. The
work and rest schedules of employees in office C showed clear regular-
ity. This is because office C is located in a commercial company and has
a clear work and rest schedule; work starts at 8:30 and ends at 17:30.
Except for some accidental factors, the working schedule is relatively
fixed.

B. Environmental parameter

The outdoor temperature distribution of the three offices in different
seasons is shown in Fig. 6. It can be detected that the outdoor tempera-
ture in transition season has a wider range, which changes from −2 °C to
over 30 °C. Two relative peaks can be distinguished from the data (one
at around 6 °C and the other at around 26 °C). The outdoor temperature
in summer followed a totally different trend. The temperature range is
more concentrated, and only one peak can be detected.

The Indoor CO2 distribution is shown in Fig. 7. It can be detected
that the range of CO2 concentration in Office B is larger than the other
two, and the high concentration (larger than 800 ppm) accounts for a
relatively large amount. The CO2 concentration of Office A and Office
C is mainly concentrated between 300 and 500 ppm.

C. On-off statuses of windows

In this study, the opening rate was used to evaluate the on-off sta-
tuses of windows. The window opening rate is calculated using Eq. (1):

Windowopening rate =
Time of windows remaining open
Total time for data collection

(1)

The window opening time of the three offices during the period
of measurement was statistically analyzed, and the results were distin-
guished among different seasons, as shown in Table 3. From the compar-
ison of the window opening rate between the transition season and the
summer, it can be found that the window opening rate in the transition
season was generally higher than that in the summer. The opening rate
of office A in the transition season was approximately 3 times greater
than that of office B in the summer. Meanwhile, for office C, the window
opening rate in the transition season was nearly 1.5 times greater than
that in the summer.

D. Window opening or closing actions

The average daily number of windows opening and closing actions of
three offices in different seasons are counted in Table 4. It can be found
that the window adjustment frequency of office C was lower than that
of office A and Office B, which also proved that the window adjustment
frequency of office C was lower than that of office A and B.

4.2. Correlation analysis

Correlation analysis between window state/ window switch action,
working schedule and environmental parameters were conducted from
subjective (questionnaire) and objective (measured data) perspectives.

4.2.1. Subjective analysis

In the questionnaire survey, the office staff provided reasons for the
window opening and closing actions, and the main trigger reasons were
identified, as shown in Fig. 8.

As shown in Fig. 8, the trigger reasons for the window operating be-
havior of office workers in the different open-plan offices were signifi-
cantly different. The main causes of window operating behavior in office
A was the indoor air quality (accounting for 46% of the trigger causes
of window opening behavior) and outdoor environment (accounting for
29% of the trigger causes of window closing behavior), and those in of-
fice B were schedules (accounting for 36% of the trigger causes of win-
dow opening behavior and 20% for window closing behavior), indoor
air quality (accounting for 27% of the trigger causes of window open-
ing behavior), and equipment factors (accounting for 25% of the trigger
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Fig. 11. Window state correlation.

causes of window opening behavior). Therefore, in offices A and B, win-
dow operating behavior was more sensitive to environmental elements.
This is mainly because office A and office B are located on a campus
and in a residential area, respectively, the adjustable area of windows is
larger, and split air conditioners are adopted. Therefore, the occupants’
window operating behavior was more flexible. Compared with those
of offices A and B, the occupants’ window operating behavior in office
C demonstrated clearer conformity. The questionnaire results showed
that many people in office C chose to ignore the windows and let others
take care of them (accounting for 29% of the trigger causes of window
opening behavior and 28% of the trigger causes of window closing be-
havior). This is because office C is located in a commercial area with a
large number of occupants, the windows can only be opened to a small
degree, and the central AC system is used for AC (only the office en-
trance is provided with a partition switch), so the flexibility of window
control behavior is poor.

According to Fig. 8, although there were some differences in the trig-
ger causes of window operating behavior in different offices, the win-
dow operating behavior in the three open-plan offices also had common
characteristics. Specifically, the window opening action was mainly trig-
gered by (1) environmental factors, namely opening the window when

the indoor air smells bad or feels stuffy (36.5%) or when feeling hot
(11.5%); (2) schedule factors, namely opening the window upon enter-
ing the office (19.2%); and (3) equipment factors, namely opening the
window when turning off the AC (9.6%). The trigger causes of window
closing action mainly included (1) environmental factors, namely shut-
ting off the AC when it is noisy outside (15.7%) or when the outdoor
environment is rainy (20.0%); (2) schedule factors, namely shutting off
the AC when people leave the office (18.6%); and (3) equipment factors,
namely closing the window when turning on the AC (21.4%). Therefore,
the main trigger factors affecting the window operating behavior of the
three offices can be summarized as environmental factors, schedule fac-
tors, and equipment factors.

4.2.2. Objective analysis

A. On-off statuses of windows

The distribution of the window on-off statuses in the three offices
under different times of day and under different outdoor temperatures
were further analyzed, as shown in Figs. 9 and 10. As shown in Fig. 9, in
terms of the time distribution, the window opening rate of office B was
always relatively low, but the window opening rate increased signifi-
cantly around 9:00. This was mainly because when the staff arrived at
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Fig. 12. Time distribution of window opening and closing actions.

Fig. 13. Temperature distribution of window opening and closing actions.

Fig. 14. Coupling analysis of window opening time and outdoor temperature.
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Fig. 15. Coupling analysis of window closing time and outdoor temperature.

Fig. 16. Interaction of the operating actions of windows and air conditioners (Office B).

the office around 9:00, they opened the window for ventilation. How-
ever, there was no significant change in the opening rate at offices A
and C during the day either during the summer or during the transi-
tion season. According to Fig. 10(a), the window open state of office A
and office C did not reflect the temperature sensitivity within the tem-
perature range of the transition season. According to Fig. 10(b), within
the outdoor temperature distribution range in summer, the temperature
had little influence on the window opening rate at temperatures lower
than 22 °C. With the further increase in outdoor temperature, the win-
dow opening rates of office B and office C decreased with the increase
in temperature. This is because in the summer, when the temperature
surpasses 30 °C, people preferred to use AC to cool the indoor tem-
perature. People tended to close the window when the AC was turned
on.

Spearman Correlation Coefficient [28] was applied to analyze the
correlation between window status and other parameters. Spearman
Correlation Coefficient is a kind of rank correlation coefficient. It can
be understood that the achievement is a sort or order, then it is solved
according to the sort position of the original data. No matter how the
data of the two variables change and what kind of distribution they con-
form to, we only care about the order in which each value is arranged in
the variable. If the corresponding values of the two variables are in the
same or similar order in each group, they have a significant correlation.

The correlation between window status and other parameters is shown
in Fig. 11. As Fig. 11(a) shows, there is a strong correlation between
the window on-off statuses of Office A and the presence of people in the
room, and the correlation with time and temperature is not obvious. In
office B, there is a strong negative correlation between the window sta-
tus and indoor CO2, and the effect of AC on the window status is second.
This shows that Office B is more sensitive to the indoor environment.
Office C has no obvious sensitive factors in the transition season, but in
summer it is more sensitive to outdoor temperature.

B. Switch actions

The time and outdoor temperature when the window state change
occurred were analyzed. This analysis based on the action only focused
on the temperature and time parameters at the time of the window state
change. The data analysis and test time had the same time step of 5 min.
The analysis results are shown in Figs. 12 and 13.

According to Fig. 12, occupants in office A frequently opened and
closed the windows in the transition season. From the perspective of
time distribution, office A was more likely to open the windows around
9:00. Over time, the trend decreased. According to the statistical results
of window operating action in office B in summer, there was clear clus-
tering at the time of window opening and closing in the summer. The
summer window operating behavior was more likely to occur between
8:00 and 10:00, which was the time when the staff arrived at the of-

184



J. Ren, X. Zhou, J. An et al. Energy and Built Environment 2 (2021) 175–187

Fig. 17. Window opening action correlation.

fice. However, regardless of the season, the number of window opening
actions in office C was significantly lower than that in offices A and B.
Office C in the transition seasons and summer had a higher opening rate,
as shown in Table 2, which reveals that occupants in office C rarely ad-
justed the windows after opening them, except in extreme weather situ-
ations (such as rain), which led to a low frequency of window operating
behavior.

As shown in Fig. 13, during the transition season, the distribution of
window operating actions in office A under different outdoor tempera-
tures was relatively average, with little regularity with the variation in
outdoor temperature. This was consistent with the previous analysis of
the window opening rate. According to the statistical results of office B
and office C’s window operating actions in summer, the window operat-
ing actions in summer also had clear convergence with the temperature
distribution. In summer, the window opening action was more likely
to occur at temperatures below 30 °C, and mostly within 24–28 °C; in
addition, the window closing actions were concentrated at 30 °C and
above. Meanwhile, the window adjustment frequency of office C was
lower than that of offices A and B.

Through the above analysis and discussion, it can be concluded that
the window operating behavior has clustering characteristics of time
periods and temperature periods. We conducted a coupling analysis on
the outdoor temperature and time of day when the window operating
behavior occurred.

Fig. 14 shows the coupling analysis of time and outdoor temperature
when the window opening action occurred in the three offices. Accord-
ing to the analysis of the transition season in Fig. 14(a), the coupling
effect of outdoor temperature and time on window opening actions in
office A had no clear trend. It was only concentrated in the time range
of 8:00 to 9:00, but the outdoor temperature distribution was very scat-
tered when the opening action occurred. This is because the acceptable
degree of the transition season for the office is high; therefore, there
is no fixed temperature range for occupants to open windows for ven-
tilation. The window opening action of office B in summer had clear
distribution characteristics. As shown in Fig. 14(b), window opening
actions occurred very frequently in the range of 7:30–9:30, and there
was an outdoor temperature range of concentrated window opening ac-
tions of 26–33 °C. The coupling of these two factors made the number
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Fig. 18. Window closing action correlation.

of window openings in these time and temperature ranges much higher
than those in the other temperature and time intervals. Fig. 14 shows
that regardless of season, the window opening behavior of office C had
no clear trends in the temperature and time coupling.

Fig. 15 shows the coupling analysis of time and outdoor temperature
when the window closing action occurred. Fig. 15(a) shows that for the
characteristics of window closing behavior in the transition season, in
office A, the coupling effect of outdoor temperature and time on the win-
dow closing behavior had no clear trend, which was only concentrated
in the range of 8:00–9:00, but the outdoor temperature distribution was
very scattered when the action occurred. According to Fig. 15(b), in of-
fice B, when the temperature exceeded 30 °C, the window closing action
occurred at 9:00 and 12:30. From the above analysis results, it is clear
that for office B, the time of day and outdoor temperature had a sig-
nificant coupling effect on the window regulation behavior in summer.
The window closing action of office C also had no clear trends in the
coupling of temperature and time regardless of the season.

In addition to environmental factors and schedule factors, it was
found from the measured data of office B that equipment factors can-
not be neglected. Fig. 16 shows the coupling relationship analysis of
the switching action of windows and air conditioners in office B. Each
bubble in the figure represents a group of window switching actions.
As shown in Fig. 16, at 24:00, the windows and air conditioners were
closed and turned off when there were no occupants in the office; there-
fore, there was an aggregation of closing actions at this time point. In
addition, during working hours, the window closing action was mainly
concentrated around the two time points of 9:00 and 12:30, and the time
when the AC was turned on in summer was also concentrated at these
two time points. Therefore, the summer window regulation behavior is
clearly affected by equipment factors.

According to Fig. 14–16, the window operating behavior in office
B reflects the significant correlation between temperature, time, and
equipment, which reveals that the trigger conditions should not be ig-
nored during the simulation of occupants’ window operating behaviors.
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Spearman Correlation Coefficient was also used to evaluate the cor-
relation between the window switch action and other parameters, as
shown in Fig. 17,18. However, limited by the number of measured
switch actions, no obvious correlation can be found from statistical anal-
ysis.

5. Conclusion

In this study, the window operating behaviors in three different types
of open-plan offices in Nanjing, China were presented and compared
through subjective and objective analysis. The preliminary results show
that influenced by the personnel composition, type of air conditioner
and adjustable degree of windows, the window operating behaviors of
different office buildings have larger discrepancies than that in the same
building. In addition, the window operating behavior in different offices
also share some common trends, like clear seasonal differences and cou-
pling influence of schedule, environment and equipment. Besides, some
results were inconsistent between the subjective analysis and the objec-
tive analysis, like the influence of CO2. As this phenomenon is common
in the investigation and analysis of the three offices, it reveals the need
for more in-depth research to reveal the reason behind. The discovered
conclusion is currently limited to the studied offices and their specific
cultural area, and more cases are needed to reveal the common features.
Future studies will be carried out to reflect the influence of offices’ char-
acteristics and season changes on window operating behavior. By apply-
ing deeper data driven technologies, new window operating behavior
model will be developed.
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Due to the quick development of urbanization, it is important to provide a healthy urban environment for the
dweller. Previous studies have obtained valuable conclusions of how to improve the urban airflow distribution
under isothermal conditions. How to adopt and interpret those conclusions when considering the solar-induced
atmospheric stability conditions have not been clarified yet. In this study, the characteristics of atmospheric
stability condition and influence of diurnal varying solar-induced thermal effect on urban airflow inside the
idealized building arrays were investigated at five cities located at five climate zones in China. Urban energy
model, CitySim, was employed to simulate the annual distribution of solar-induced walls’ temperatures inside
the idealized building arrays. The diurnal varying wall temperatures at the hottest days were set as thermal
boundary conditions in computational fluid dynamic (CFD) simulations. With albedo value of 0.5, the possibility
of adopting the results from isothermal condition directly ranged from 7% to 11% for the five cities in China
throughout the year. The unstable condition ocuppied from 19% to 24% annually and the stable condition of
more than 40% annually was observed. Under the diurnal varying solar-induced thermal effect, the spatially-
averaged air speeds and airflow patterns were significantly different from the isothermal conditions. The percent
of Richardson number under different atmospheric stability conditions annually based on the Citysim simulation
results indicated that the atmospheric stability was most likely determined by the local climate characteristics
and albedo value rather than the building layouts at the five selected cities in China, but this should be further
investigated when the shadow effects of surrounding buildings were considered in simulations.

1. Introduction

Rapid urbanization has altered the local climate greatly comparing
to the rural area. Urban Heat Island effect has brought more attention
in recent decades especially with more frequent attacks of heat waves
in summers. How to maintain the proper thermal comfort and outdoor
air quality is remained as challenges.

Many of the previous studies investigated the urban airflow paramet-
rically under isothermal conditions [1–11] in the spatial scale of neigh-
bourhood (<1 km) and street (<0.1 km). These parameters included
urban length, building height variations and layouts, frontal area ratios
(ratio of building frontal area to ground surface area, 𝜆f) and plan area
ratios (ratio of building roof to ground surface area, 𝜆p). However, it was
observed that the solar-induced buoyancy force could also influence the
flow regime within urban built environment, especially when the wind
speed was relatively low. The results of a field experimental study in
summer at Nantes [12] showed that the maximum building surfaces’
temperature in the afternoon exceeded 50 °C and the uneven tempera-
ture distributions on different walls induced strong buoyancy force af-
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E-mail address: li.rong@eng.au.dk (L. Rong).

fecting the airflow distribution in the studied building area. Some wind
tunnel studies designed scenarios with the heated leeward-wall, heated
windward-wall, heated ground and heated all walls to mimic the atmo-
spheric stable/unstable conditions and to investigate the effects of buoy-
ancy force induced by solar radiation on airflow patterns [13–20]. Some
researchers [21–33] adopted CFD modelling to simulate the airflow pat-
terns and quantify the spatially-averaged flow properties by adopting
the thermal boundary condition on a single wall or uniform thermal
boundary conditions (e.g. constant heat flux). The results from these
studies under non-isothermal conditions revealed that the airflow pat-
terns and spatially-averaged flow properties were very different compar-
ing to those obtained from the isothermal conditions where Richardson
number was 0.0.

The simplified hypotheses of single wall and all walls heated by so-
lar radiation uniformly might not represent the complex solar-induced
wall thermal conditions to study the urban airflow under non-isothermal
conditions. Some simulation tools, such as ENVI-met [34] and MITRAS
[35], were employed to investigate the airflow distribution under solar-
induced diurnal varying weather conditions. However, the numerical
models were simplified and spatial resolution was relatively low be-
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cause of several phenomena solved simultaneously in these tools. Ur-
ban energy model (UEM), such as Temperatures of Urban Facets in 3-D
(TUF3D) [36], Indoor-Outdoor Urban Energy Balance Simulator (TUF-
IOBES) [37], and CitySim [38], etc. could model the diurnal varying so-
lar radiation to predict the diurnal varying thermal boundary conditions
on urban surfaces with one hour interval. By coupling UEM and CFD,
studies confirmed that the unstable atmospheric conditions induced by
solar radiation altering the airflow patterns and spatially-averaged flow
properties significantly with respect to isothermal conditions [39–43].
Our previous study also indicated that the airflow distribution under
‘ideal’ hypothesis of all uniformly heated walls and the ‘realistic’ solar-
induced wall thermal conditions inside 3-D building array differed sig-
nificantly especially under low wind speed conditions [44].

The atmospheric stability condition inside the urban built envi-
ronment (which is a similar concept borrowed from meteorology by
analysing the Richardson number) varies with the weather conditions
(wind conditions, solar radiation angles etc.) seasonally and diurnally as
well. Therefore, CFD simulation of urban airflow under non-isothermal
conditions which was closer to the real situations should be conducted
by taking the diurnal variation of atmospheric stability condition into
consideration while detailed CFD simulations conducted seasonally was
not applicable yet due to the limitation of computer capacity. Kwak et al.
[45], Liu et al. [39] and Dong et al. [46] investigated the airflow inside
an isolated street canyon under predefined diurnally varying unstable
atmospheric conditions with the climates of Soul, Harbin and Beijing re-
spectively. The reported resluts obtained from these studies with an iso-
lated canyon provided valuable knowledge on microclimate within the
canyon under unstable atmospheric conditions and further confirmed
the significance of considering the three-dimensional surface heating
boundaries in order to evaluate the urban microclimate. However, in
reality such an isolated canyon is mostly unlikely. Yaghoobian et al.
[47] studied the airflow, temperature and pressure distribution as well
as turbulent transport by using a geometry model of 3 x 5 building array
under diurally varying atmospheric conditions in two summer days at
Arizona. Following the similar set-ups used by Yaghoobian et al. [47],
Nazarian et al. [42,43] analyzed the airflow and thermal distribution as
well as pollutant dispersion under diurally varying atmospheric condi-
tions based on horizontal and vertical Richardson numbers. These re-
sults provided detailed information of environmental parameters distri-
butio and turbulent transport, but the information of spatially-averaged
flow properties were not analyzed, which are also meaningful in evalu-
ation of the urban microclimate during the urban design and planning.

Studies conducted under isothermal/non-isothermal conditions
could provide valuable suggestions to improve the airflow distribution
in urban area, but a more practical knowledge cannot be achieved with-
out considering the atmospheric (airflow within the urban zone) stabil-
ity condition, especially with diversified climate zones in China. It is
significant to provide the characteristics of atmospheric stability condi-
tion as a guideline to adopt and interpret the valuable results obtained
under isothermal conditions properly and identify how the diurnally
varying atmospheric conditions affect the urban airflow. By employing
the weather data of a typical meteorological year and building codes
of the selected five cities, locating at five climate zones in China, the
main objectives were: (a) to identify the possibility that the isothermal
conditions could represent the practical situations based on the annual
Richardson numbers at five climate zones in China by using an ideal-
ized urban zone; (b) to analyse the differences of spatially-averaged
flow property between diurnal varying non-isothermal conditions and
isothermal conditions; (c) to compare the airflow patterns between di-
urnal varying non-isothermal conditions and isothermal conditions.

2. Methodologies

The commonly investigated generic neighbourhood-scale building
arrays, square and staggered layouts with medium building density
(λf=λP= 0.25), were adopted in this study, as shown in Fig. 1(a) and

Fig. 1(b). The building width (B) and distance between buildings (W)
equal to building height (H), (B = W = H = 30 m). In order to obtain
reasonable solar radiation, the ground surface inside the building ar-
ray was split into 10 m x 10 m patches, as each green patch shown
in Fig. 1(a) and Fig. 1(b). The red planes in the middle of the arrays
were selected for the investigation of airflow patterns in the vertical
plane. The geometry model was built in the UEM software CitySim and
the hourly wall temperatures were obtained from the annual simulation
results based on the typical year weather data file. These wall temper-
atures were extracted for defining the thermal boundary conditions of
CFD simulations at the corresponding hours.

2.1. CitySim setup

CitySim [38] is an urban energy model for modelling and optimizing
the energy flux in urban area. The energy balance between indoor and
outdoor is simulated by integrating radiation model, energy conversion
model and stochastic behaviour model. The shortwave and longwave ra-
diation are determined by simplified radiosity algorithm [48] and All-
weather model [49]. The solar radiation and radiation exchange be-
tween neighbouring building walls, the ground surfaces and the envi-
ronment can be computed with scales ranging from a small neighbour-
hood to an entire city. With the input meteorological data of the typical
year, horizon characteristics (solar angle and topographical) and build-
ing codes, the heat flux through the walls are computed by electrical
analogy methodology. Multiple iterations are performed with hourly
time-step until the walls’ temperatures reach convergence. In current
CitySim version, the temperature stratification on each wall caused by
surrounding buildings’ shielding was not considered and the tempera-
ture on each wall was uniform at a specified hour. CitySim has been
successfully verified against Building Energy Simulation Test method
and field measurement of an EPFL (École polytechnique fédérale de
Lausanne) campus building [50]. It uses convective heat transfer co-
efficients’ correlations and it was reported that no large errors were in-
troduced [51]. One-way coupling CitySim and CFD was successfully ap-
plied to study the influences of building configurations and walls’ albedo
values on local wind-thermal environment [52–54].

The meteorological data (the solar irradiance, the wind speed, direc-
tion and etc.) and horizon characteristics (solar angle and topographi-
cal) of the investigated cities for CitySim simulation were derived from
Meteonorm [55]. The investigated cities were Guangzhou, Kunming,
Shanghai, Beijing and Harbin, which are located in the climate zones of
Hot Summer & Warm Winter, Temperate, Hot Summer & Cold Winter,
Cold and Severe Cold respectively. The key building thermal parame-
ters and opening properties of each investigated city were summarized
in table 1, which were complied with Chinese Design Standards for en-
ergy efficiency of public buildings [56–58]. Besides, the infiltration was
set as 1 h−1, with space heating and cooling to maintain the indoor air
temperature between 18 °C (16 °C for Guangzhou) and 26 °C. The open-
able faction of windows was 50% with the shading device of 50%. The
recommended value for walls’ albedo ranges from 0.25 to 0.85 based on
walls’ lightness [59]. With the consideration of diversity in wall colour,
the albedo (𝛼) of all building walls was set as 0.5 when the thermal
boundary conditions were used for CFD simulations while three differ-
ent albedo values (namely 0.3, 0.4 and 0.5) were used for analysis of at-
mospheric stability conditions by using annual Richardson number. The
ground inside the building array was assumed as asphalt with albedo of
0.5.

2.2. CFD setup

Large Eddy Simulation (LES) and Reynolds-Averaged Navier-Stokes
(RANS) [60] were the two main turbulence modelling methods used
in urban physics. Santiago et al. validated the simulation results ob-
tained from LES and RANS modelling by using field measurement data.
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Fig. 1. Sketches of the investigated
neighbourhood-scale building arrays in
(a) square layout, (b) staggered layout and (c)
sketch of the computational domain (in the
case of wind coming from south-west).

Table 1

Building thermal parameters and glazing ratio of the investigated cities.

Surfaces’ U-value Windows Glazing ratio

Wall[W/(m2·K)] Roof[W/(m2·K)] Floor[W/(m2·K)] U-value[W/(m2·K)] G-value[-] North[%] East[%] South[%] West[%] Roof[%]

Guangzhou 0.72 0.44 1.32 2.40 0.20 45% 30% 50% 30% 4%

Kunming 0.72 0.44 1.32 2.40 0.20 40% 35% 45% 35% 4%

Shanghai 0.54 0.39 0.46 2.30 0.32 35% 25% 50% 25% 4%

Beijing 0.46 0.39 0.46 1.77 0.37 30% 35% 50% 35% 4%

Harbin 0.35 0.25 0.25 1.76 0.68 25% 30% 45% 30% 4%

It showed that the difference of the simulation results of the spatially-
averaged flow properties were negligible between the two modelling
methods while the vertical mean velocity could be better predicted by
LES [61]. Standard k-ɛ model showed the capability to reasonably pre-
dict the mean flows appropriately inside the idealized building array
under both isothermal and non-isothermal conditions [1,3,24,40,62–
65] and was therefore adopted in this study too.

2.2.1. Validation of the case under isothermal condition

The wind tunnel experiment conducted by Brown et al. [66] were
widely adopted for CFD validation of airflow inside the idealized
building array under neutrally stratified atmospheric boundary layer
[1,3,8,67,68]. The building array consisted of 7-row (in stream-wise di-
rection) and 11-column (in span-wise direction) cubic blocks. The cubic
blocks’ width (B), height (H) and distance between blocks (W) were the
same (B =W = H = 15 cm, λf=λP= 0.25). The three velocity components
were measured in the vertical central plane of the 3-D idealized building
array (V1 to V6), as shown in Fig. A1 of Appendix A.

In CFD validation study, a full-scale building array was used with
scale ratio of 200:1 (B = W = H = 30 m). As the building array was
sufficiently wide in the span-wise direction, the external airflows be-
yond the lateral boundaries would hardly affect the airflow in the mid-
dle main street, it was acceptable to only consider the middle column
to reduce computational source [62]. The distance between the build-
ing array and the inlet and outlet were 6.7H and 40H respectively in
the computational domain, which were the same as previous validation
studies [1,3]. The distance from the top surface of the building array
to the computational domain top was 5H. The computational domain
outlet was set as pressure outlet, and the domain lateral sides and top
were set as symmetric boundary conditions. Three types of mesh resolu-
tions were tested for grid sensitivity study: coarse mesh (700,356 cells),
medium mesh (1893,956 cells), fine mesh (3032,751 cells). The mesh
were generated by trimmed mesher with surface control. The base size
was 5.0 m, the global surface growth rate were set as 1.05. The target
surface sizes of ground, domain inlet and outlet were 2.0 m. the target
surface sizes of domain sides and top were 10.0 m. Prism layer was em-
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ployed at the ground and building walls with first layer height of 0.5 m
and 0.1 m respectively. The target surface sizes of cubic blocks’ surface
in the coarse mesh, medium mesh and fine mesh were 2.0 m (H/15),
1.0 m (H/30) and 0.5 m (H/60) respectively.

2.2.2. Validation of the case under non-isothermal condition

Standard k-ɛ model with standard wall function were applied to
predict the airflow under the unstable atmospheric conditions by ne-
glecting the detailed heat transfer process near wall surfaces [1,40] and
reasonable agreements between simulated and measured results were
achieved. This study validated the standard k-ɛ model, standard wall
function with Boussinesq model against another wind tunnel experi-
ment conducted by Cui et al. [16], as shown in Fig. A2 of Appendix A.
In the wind tunnel experiment, the thermal buoyancy force was in-
duced by heating the ground between two cubic blocks to gener-
ate the temperature difference. The normalized velocity magnitude
(U/Uref, U =

√
ū2+v̄2+w̄2) along the vertical central line in the street

canyon under Richardson number (Ri) of 0.14 and 0.85 respectively
were used for validation. The Ri, reflecting the ratio of buoyancy force
to inertia force, was defined as:

Ri =
gβH(Tw−Tref )

U2
ref

(1)

where Tref was the reference temperature, K; Uref was the reference wind
speed, m s−1; Tw was temperature of walls, K; g was the gravity accel-
eration and was equal to 9.81, m s−2; H was the building height, m; 𝛽
was the thermal expansion rate of air and was equal to 0.0033, K−1.
For CFD simulated cases, the Tref was taken as the air temperature at
the inlet; Uref was the reference wind speed of the inlet at the refer-
ence height of 10.0 m (the height of meteorological data measurement
in Meteonorm). Tw was calculated by averaging the temperatures of all
wall surfaces inside the idealized building arrays. Grid sensitivity studies
were conducted. Three mesh resolutions were tested and they were 0.74,
1.03 and 2.09 million respectively for coarse, medium and fine mesh.
The base sizes were 0.64, 0.32 and 0.16 m for the coarse, medium and
fine mesh respectively. The control on according surfaces were normally
determined based on the percent of the base size. For example, the sur-
face sizes of the heated ground and houses were 2% of the base size,
namely H/12.5, H/25 and H/50 for the three mesh resolutions respec-
tively. There were also volume control before the low height building
and after the higher building with 8% of the base sizes.

2.2.3. CFD simulation model for investigated cases

As the hottest days had rather high ambient air temperature and solar
irradiation, the simulation cases were conducted by using steady-state
meteorological data at 00:00, 04:00, 08:00, 12:00, 16:00, 20:00 and
24:00 ToD (time of day) on the hottest days of each investigated city
without considering the dynamic process of solar radiation and wind
conditions. The meteorological data of the investigated ToDs at the five
cities were summarized in Appendix B. To study the effect of building
layout, the hottest day in Guangzhou was chosen for the investigated
scenarios. The building walls were considered as smooth surfaces and
the grounds were modelled as rough surfaces. The thermal boundary
conditions of the buildings’ walls and grounds’ surfaces were set as the
wall temperatures on the hottest days obtained from CitySim. The ther-
mal boundary condition of the ground outside the building array was set
as the same as the incoming air temperature in order to avoid heating
up by the approaching air [53]. The incoming air temperature and wind
conditions were obtained from the meteorological data too.

The log-law time-average velocity profile [69] was adopted. The in-
let vertical profile of velocity U(z), the turbulent kinetic energy k(z)
and the turbulence dissipation ɛ(z) were expressed as Eqs. (2)–(4) re-
spectively.

U(z) =
u∗ABL
k

ln
(
z+z0
z0

)
(2)

k(z) =
u∗ABL

2

√
Cμ

(3)

ε(z) =
u∗ABL

3

kv(z+z0)
(4)

ks=
9.793z0

Cs
(5)

where u∗ABL was the atmospheric boundary layer friction velocity, m
s−1, C𝜇 is a constant (0.09), and kv is von Karman’s constant (0.41).
The roughness length z0 was set as 0.1 m which represented the airflow
above open rural area with a regular cover of low crop. It was noticed
that this value could not represent the urban area well but challenges oc-
curred to generate the reasonable mesh resolution with a higher rough-
ness length value due to the relationship between the roughness length
and roughness height shown in Eq. (5). The roughness constant Cs was
set as 4.0 following the suggested value by Hang and Li [68]. The refer-
ence wind speed (Uref) at the reference height of 10.0 m was achieved
from the weather data exported from Meteonorm software.

With parallel wind directions, the surface parallel to the inlet was
set as pressure outlet, lateral sides and the top surface of the computa-
tional domain were set as symmetry boundary condition. The distances
from the boundary of building array to the top surface, lateral sides, in-
let and outlet of the computational domain were 5H, 5H, 6.7H and 40H
respectively, which fulfilled the recommendation in the guideline for
CFD Simulation in urban area [70]. With oblique wind directions, there
were two outlets and two inlets of the computational domain along with
the symmetry boundary condition on the top surface of the domain. The
distances from the boundary of building array to the domain top, inlet
and outlet of the computational domain were 5H, 6.7H and 40H respec-
tively, seen in Fig. 1(c). The vertical profile of time-averaged velocity
components at the two inlets were calculated by Eq. (6)–(8) respectively.

ū = U(z)cosθ (6)

v̄ = U(z)sinθ (7)

w̄(z) = 0 (8)

STAR-CCM+ [71] was employed for CFD simulations in this study.
The mesh resolution were similar to the medium mesh in grid sensitiv-
ity study of the validation cases and the grid number was around 10.3
million in the simulated cases with square and staggered layout building
arrays. The wall y+was larger than 70.0 on the surfaces inside the build-
ing array and could reach 3000 at some area (it was noticed that the y+
value larger than 500 could lead to uncertainties but it was difficult to
meet all the requirement of mesh quality and the relationship between
the roughness height and roughness length). The standard k-ɛ model was
selected to solve the turbulent quantities and the energy conservation
equation was activated to solve the temperature distributions. Also, the
buoyancy force generated by the temperature difference was accounted
by using Boussinesq’s approximation. The segregated solver was used
and the second-order upwind scheme was selected to discretise the con-
vection terms of the partial differential equations. The under-relaxation
factors for velocity, pressure, k-ɛ turbulence and k-ɛ turbulence viscosity
were 0.7, 0.3, 0.5 and 0.5 respectively. The simulations were monitored
by the values of residuals of continuity, turbulent dissipation rate, tur-
bulent kinetic energy and energy as well as velocity magnitude at a few
pre-defined points. The criteria of these residuals were 10−4 and the
values of the monitored parameters at the pre-defined points changed
little when the convergence of the simulations were considered to be
reached.
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Fig. 2. Comparison of stream-wise velocity, vertical velocity and turbulent kinetic energy between CFD simulations and wind tunnel measurements at line of (a - c)
x/H = 1 and (d - f) x/H = 11.5.

3. Results and discussions

3.1. Validation of CFD simulations

The vertical profiles of stream-wise velocity component, vertical ve-
locity component and the turbulent kinetic energy at lines of x/H = 1.5
and x/H = 11.5 with three mesh resolutions were compared with exper-
imental data, as shown in Fig. 2. Similar to previous validation studies
[1,8,62,67,72] (not shown in Fig. 2 but referred to them), the vertical
profiles of stream-wise velocity component obtained from CFD simu-
lations were in reasonable agreements with experimental data. Even
though the deviations in velocity vertical component and turbulent
kinetic energy were relatively large from the measured values, their
shapes were predicted properly, which were also reported in the pre-
vious validation studies [62] when standard k-ɛ model was used. Mean-
while, the simulated results under fine and medium mesh arrangement
showed slightly differences.

In the validation against non-isothermal conditions, the vertical pro-
files of normalized velocity magnitude along the vertical centre-line of
the street canyon were compared with experimental data, as presented
in Fig. 3. The experimental data were extracted from the published liter-
ature by Cui et al. [16] and uncertainties of the extracted experimental
data probably existed. The velocity profiles near the ground level under
Ri = 0.14 and Ri = 0.85, and the velocity profile near the roof level with
Ri = 0.14 obtained from CFD simulation were in reasonable agreements
with experimental data. It was also seen that the CFD simulation slightly
underestimated the normalized velocity magnitudes in the middle of the
street canyon with Ri = 0.85.

Table 2

Atmospheric stability conditions catalogued by
Richardson number.

Class Range of Richardson number

Stable Ri≤−0.134
Slightly stable −0.134< Ri ≤−0.053
Neutral −0.053< Ri ≤0.1

Slightly unstable 0.1< Ri ≤0.37

Unstable 0.37< Ri ≤0.86

Very unstable Ri >0.86

The above CFD validation results showed that the standard k-ɛ model
could reproduce the vertical profiles of velocity magnitudes or stream-
wise velocity component reasonably within the building array under
both isothermal condition and non-isothermal conditions, was therefore
adopted for further CFD simulations in this study.

3.2. Characteristics of atmospheric stability

The annual distributions of atmospheric stability of the five cities
were analysed by using Richardson numbers defined in Eq. (1). The at-
mospheric stability could be catalogued into six classes based on the
range of Richardson number [73], summarized in Table 2.

The annual distributions of atmospheric stability with albedo val-
ues 𝛼 of 0.3, 0.4 and 0.5 respectively were shown in Fig. 4. Harbin had
the highest percentage of unstable condition (higher percent of the time
when the wall temperatures of the buildings were higher than the am-
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Fig. 3. Normalized velocity magnitude distributions
along the vertical central line of the street canyon un-
der non-isothermal conditions with (a) Ri=0.14 and (b)
Ri=0.85.

Fig. 4. Annual distribution of atmospheric stability condition inside (a) square layout and (b) staggered layout of buildings.

bient air temperature). Guangzhou had the highest percentage of stable
condition where higher percent of the time was that the wall temper-
atures of buildings were lower than the ambient air temperature. Kun-
ming had the highest percentage in between the stable and unstable
conditions, where highest percent of time was that the Ri (in absolute
value) was small and the airflow might not be affected greatly by the
wall thermal boundary conditions induced by solar radiation. For the
five cities in China, stable condition occurred for more than 40% of the

time, and neutral condition occupied 7%–11% of the time. Lower value
of albedo resulted higher percentage of unstable condition. With albedo
values of 0.5, unstable condition occupied 19%–24% annually, while it
occupied 24%–28%with albedo values of 0.3. There was no obvious dif-
ferences in the annual distributions of atmospheric condition between
the square and staggered building layouts, but the staggered layouts had
slightly higher absolute value of Richardson number than square layout
annually. The results indicated that the atmospheric stability condition
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Fig. 5. Distribution of annual Ri in hourly series with 𝛼 of 0.5 inside (a) square layout and (b) staggered layout at the five cities in China.

Fig. 6. Diurnal variations of building walls’ temperatures with 𝛼 of 0.5 on the hottest days inside (a) square layout and (b) staggered layout.

was most likely determined by the local climate characteristic (solar ir-
radiation and wind speed), and the albedo value rather than the building
layout form when the shadow effect of surrounding buildings was not
considered.

Fig. 5 showed the annual Richardson number distributions with
hours at the five cities in China under two building layouts. It was
observed that the ariflow in the urban area was under stable condi-
tion between 20:00 ToD and 05:00 ToD and unstable condition was
noticed from 06:00 ToD to 18:00 ToD. It was difficult to conclude
what o’clock of the day was under the very unstable condition, but it
would occur from 08:00 ToD to 18:00 ToD. This observation was con-
sistent with the previous studies that unstable conditions appeared in
the evening after sunset when the heat island intensity was maximum
[1] or at the hottest hour of the day when the walls’ temperatures were
maximum [39].

The according hottest day at the five cities in China were selected to
investigate the effects of the solar-induced thermal wall conditions on
urban airflow in diurnal circle. The building walls’ temperatures inside
the layout (surrounded by other buildings) were proximately the same
on the walls having the same orientation. Fig. 6 showed the average
walls’ temperatures of each studied case on its hottest day respectively
with 𝛼 of 0.5. The highest walls’ temperatures were noticed on west
orientation walls at 16:00 ToD for most cities, and the highest walls’
temperature exceeded 60 °C at the hottest hour at Shanghai. The high-
est walls’ temperatures were observed on the East walls at 08:00 ToD at
Beijing. Although the similar diurnal variations of walls’ temperatures
were noticed for both square and staggered layouts, the walls’ tempera-
tures were slightly higher (≤0.5 °C) with staggered layout comparing to
those with square layout throughout the day, which were also observed
in previous study [52]. As the building heights used in both staggered
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Fig. 7. Diurnal variations of Richardson number on the hottest days inside (a) square layout and (b) staggered layout.

Fig. 8. Diurnal variations of (a) V∗
r , (b) Qroof (tur)

∗ and (c) ACH∗ on the hottest days within square layout.
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Fig. 9. Variation of (a) V∗
r , (b) Qroof (tur)

∗ and (c) ACH∗ with Richardson number on the hottest day with square layout.

Fig. 10. Contours of temperature difference covered by streamline at pedestrian level at (a) 04:00 ToD, (b) 08:00 ToD and (c) 12:00 ToD in Guangzhou (x pointing
to the South, y pointing to the East and z pointing to the domain top).
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Fig. 10. Continued

and square layouts were identical and the aspect ratio (H/W) was 1.0,
the shadow effects on walls’ temperatures have already been reduced.
As buildings in staggered layout were more close to the edge of the
building array and had more areas of ground surfaces, more longwave
radiation from the outer ground surfaces would therefore be absorbed
by the building walls and this resulted slightly higher walls’ tempera-
tures. The urban surfaces’ temperatures on the hottest days were used
to identify the atmospheric stability in diurnal circle, and also used to
define the thermal boundary conditions for CFD simulations.

Regarding the atmospheric stability of the hottest days, the influ-
ences of albedo values were obvious. The largest difference of Richard-
son number was 64 between 𝛼 of 0.3 and 0.5 in Guangzhou, as pre-
sented in Fig. 7. Although the square and staggered building layouts
were approximately under the same atmospheric stability condition at
the specified hour, the staggered layout had slightly higher absolute
value of Richardson number than square layout. With the albedo value
of 0.5 in the square layout, the very unstable conditions were observed
at around 08:00 ToD at the five cities (be aware of the different ranges
of Ri for each city shown in Fig. 7. The reason that non-identical range
of Ri was used for each city was to show the variation of Ri with ToD

better for the cities with smaller ranges of Ri). The atmospheric stability
conditions were between stable and unstable at the hottest hours (16:00
ToD) for most of the investigated cities, except that Shanghai was under
very unstable condition. The stable conditions were observed between
night and dawn at Guangzhou and Shanghai.

3.3. Diurnal variation of thermal wall temperature conditions on

spatially-averaged flow properties and airflow patterns

The airflow condition at pedestrian level (1.75 m above the ground)
was commonly analysed and evaluated by using velocity ratio (Vr) [74].
The turbulent fluctuations across street roofs significantly contributed
to pollutant removal [75]. As the street roofs provide greater total area,
the effective flow rates driven by turbulent exchange across street roofs,
Qroof (turb), was an important index for the urban canopy layer ventila-
tion. Meanwhile, the overall ventilation efficiency of the entire canopy
was examined by using ACH. The parameters of Vr, Qroof (turb) and ACH
were calculated by Eq. (9)–(11) respectively:
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Fig. 10. Continued

Vr=
UP
Uref

(9)

Qroof (turb) =
∑

± ∫
Ai

0.5σwdAi (10)

ACH = 3600 ∗
QT
vol

(11)

where in Eq. (9), UP was the average wind velocity magnitudes at pedes-
trian level inside the building array, Uref was the reference wind veloc-
ity at inlet with reference height of 10.0 m. In Eq. (10), Ai were the
surfaces of street canyons’ roof (56 surfaces for 5 × 5 building array).
σw=

√
w′w′=

√
2k∕3 was the fluctuation velocity based on the approx-

imation of isotropic turbulence in k-ɛ turbulent models where u′, v′
and w′ were the stream-wise, span-wise, vertical velocity fluctuations
(u′ = v′ = w′) and the turbulent kinetic energy k = 1

2 (u
′u′+v′v′+w′w′)

[68]. In Eq. (11), QT was the total flow rate entering the control volume,
m3/s, vol was the control volume of the entire neighbourhood canopy,
m3.

The influences of solar-induced thermal wall boundary conditions
on airflow were weighed by normalized velocity ratio (V∗

r ), normalized

flow rate (Qroof (turb)∗) and normalized air change rate (ACH∗), which
were the deviation ratio bewteen non-isothermal conditions(Ri ≠ 0) and
isothermal conditions (Ri = 0), as Eq. (12)–(14).

V∗
r =

Vr, non−isothermal

Vr, isothermal
(12)

𝑄𝑟𝑜𝑜𝑓 (𝑡𝑢𝑟𝑏)∗ =
𝑄𝑟𝑜𝑜𝑓 (𝑡𝑢𝑟𝑏)𝑛𝑜𝑛−𝑖𝑠𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙
𝑄𝑟𝑜𝑜𝑓 (𝑡𝑢𝑟𝑏)𝑖𝑠𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙

(13)

ACH∗=
ACHnon−isothermal
ACHisothermal

(14)

The influences of diurnal solar-induced thermal wall boundary con-
ditions on the three parameters were presented in Fig. 8. The devia-
tion of Vr from isothermal conditions were noticeable under diurnal
solar-induced thermal wall boundary conditions, especially at Shanghai
shown in Fig. 8(a). The outdoor effective flow rates driven by turbulent
exchange across the street roofs and ventilation efficiency (Qroof (turb))
and (ACH) were less sensitive to the diurnal solar-induced thermal wall
boundary conditions, as their deviation from isothermal conditions were
much smaller, as shown in Fig. 8(b) and Fig. 8(c). At Kunming, the influ-
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Fig. 11. Contours of temperature differ-
ence covered by streamline at vertical sec-
tion of target street canyons at (a) 04:00
ToD, (b) 08:00 ToD and (c) 12:00 ToD
in Guangzhou (x pointing to the South, y
pointing to the East and z pointing to the
domain top).
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Fig. 12. Diurnal variations of (a) V∗
r , (b)

Qroof (tur)∗ and (c) ACH∗ on the hottest day of
Guangzhou.

ences of diurnal solar-induced thermal wall boundary conditions on ur-
ban airflow were less significant. The results achieved on the hottest day
showed that the strongest thermal effect on urban airflow occurred at
08:00 ToD among the simulated cases when the deviation from isother-
mal conditions were the highest.

The normalized flow properties from the five cities varying with Ri
were presented in Fig. 9 and the small figures inserted in Fig. 9 were
the results between slightly stable and slightly unstable conditions. The
wind environment at the pedestrian level were more prone to be af-
fected by thermal effects as the V∗

r responded to the increasing of Ri im-
mediately when atmosphere switched from stable conditions to slightly
unstable conditions. The influence levels of thermal effect on Vr were
more significant under unstable conditions comparing to the stable con-
ditions. Its deviation from isothermal conditions would be three times
higher under unstable conditions, while V∗

r was around 1.5 times un-
der the stable conditions compared to the isothermal conditions. The
Qroof (tur)∗ and ACH∗ increased almost linearly with larger Ri. As all
cases were simulated by using the real meteorological data and the wind
directions were not identical of the five cities at the same o’clock with
the changing wind speeds, the influences of wind direction on the nor-
malized parameters were therefore difficult to be analysed in this study.
Our previous study indicated that the wind direction contributed largely
to the change of airflow patterns under the same unstable condition
comparing to the isothermal condition [44].

The impacts of building layout on airflow under diurnal varying ther-
mal effects were compared on the hottest day of Guangzhou. The con-
tours of temperature difference (the air temperature minus reference air
temperature) together with streamlines at pedestrian level and vertical
planes of the target street canyons (seen in Fig. 1) were presented in
Figs. 10 and 11 under both isothermal and non-isothermal conditions,
with x pointing to the South, y pointing to the East and z pointing to the
domain top. Under the isothermal conditions, the velocity and airflow
pattern were only determined by layout form and wind direction. Un-
der the non-isothermal conditions, the thermal effects would influence
the airflow pattern noticeably at both horizontal and vertical planes.
When the atmosphere was under very stable condition at 04:00 ToD
(Ri=−108.89), Fig. 10(a) revealed that the air temperature at pedes-
trian level was nearly uniform and lower than the reference incoming
air temperature and the airflow tended to flow out of the building array
compared to the corresponding isothermal conditions where the airflow
tended to flow into the building array. However, the airflow tended
to flow into the building array at the vertical plane compared to the
isothermal conditions where the airflow tended to escape from the ver-
tical canyon, as shown in Fig. 11(a).

When the airflow in the urban area was under very unstable condi-
tion at 08:00 ToD (Ri = 26.28), the windward walls’ (on the West) and
the ground surfaces’ temperatures were lower than the incoming refer-
ence air temperature. With relative lower wind speed, less heat flux were
convected from the high temperature walls on the East, the air temper-
ature at pedestrian level was lower than the incoming air temperature,

except some area behind walls on the East, as shown in Fig. 10(b). The
air temperature increased with the height at the vertical plane and were
higher than the incoming air temperature near the roof level. With rel-
atively higher wall temperatures on the East, the flow patterns were
more chaotic than the corresponding isothermal conditions, shown in
Fig. 10(b). In Fig. 11(b), the flow was observed to fall down following
the colder walls on the West and to be heated up along the walls on
the East due to the different temperature distributions on these walls.
When the Richardson number was more close to neutral condition at 12:
00 ToD (Ri = 0.35), only minor differences of airflow patterns between
isothermal conditions and non-isothermal conditions were observed at
the area where had higher local thermal stratification at horizontal di-
rection, as shown in Fig. 10(c) with purple rectangle, while obvious
differences existed at the vertical plane of the latter street canyons as
shown in Fig. 11(c).

Fig. 12 indicated that the deviation in pedestrian wind velocity ra-
tio was slightly higher inside the staggered layout on the hottest day.
One reason was that the staggered layout would induce more turbulence
[76] and it would have higher velocity ratio at some cases. On the other
hand, the solar-induced thermal wall boundary conditions had slightly
larger effects on spatially-averaged flow properties with staggered lay-
out since it introduced slightly higher temperature differences between
wall surfaces and ambient temperature as presented in Fig. 7. As the air-
flow in the urban area was under more stable/unstable conditions with
staggered layout, the inflow and outflow through the street roof were
larger, namely, higher Qroof (tur)∗. Meanwhile, as the staggered layout
had larger area for the inflow and outflow, the influences of more sta-
ble/unstable conditions was counterbalanced somehow, which led to
lower ACH∗.

3.4. Limitations of this study

This study provided the possibility to apply the valuable results from
previous studies under isothermal condition into a more ‘realistic’ ur-
ban condition annually. Applying the diversified meteorological data
and building codes of five cities in China, this study presented the im-
portance of considering solar-induced thermal wall boundary conditions
to analyze the urban airflow. However, the solar-induced thermal wall
boundary conditions was affected by factors such as wall albedos, urban
morphology, meteorological data, etc.. The current version of CitySim
did not consider the effect of shadow caused by surrounding buildings.
The distribution of temperatures on each building surface was there-
fore uniform while in reality there normally has temperature stratifica-
tion on the walls. The dynamic exchange of heat flux between CFD and
CitySim was ignored. More advanced urban energy model and dynamic
coupling between UEM and CFD could be conducted for a more detailed
solar-induce thermal environment. Meanwhile, in order the minimize
the shadow effect, this study just considered building array with iden-
tical building heights and medium density, the solar-induced thermal
effect on the investigated parameters under varying urban morpholo-
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gies could be different. The diurnal variations of solar-induced thermal
effect were only considered on the respective hottest day of the five
cities, more diverse diurnal circle of thermal effect could be simulated
in different seasons or on other representative days.

4. Conclusion

The characteristics of atmospheric stability condition and influence
of diurnal varying solar-induced thermal effect on urban airflow inside
the idealized building arrays were investigated at five cities located at
five climate zones in China. The main conclusions are as follows.

(1) The atmospheric stability condition was determined by local climate
characteristic and albedo value without considering the effects of
shadows caused by surrounding buildings.

(2) The characteristics of atmospheric stability can serve as a guideline
to evaluate the possibility of adopting the previous conclusions ob-
tained from studies under isothermal conditions. The stable condi-
tions was more than 40% annually and probably should be investi-
gated more in the future.

(3) The differences of spatially-averaged airflow properties and air-
flow distribution at horizontal and vertical planes between non-
isothermal conditions and isothermal conditions indicated the im-
portance of considering the solar-induced thermal wall boundary
conditions under unstable conditions in idealized urban area. Al-
though the differences in airflow pattern at horizontal direction can
be ignored when the Ri is close to 0.0, namely, close to isothermal
condition, the differences of airflow patterns at vertical planes was
still noticeable.

(4) Although the form of building layout hardly contributed to the atmo-
spheric stability conditions, the staggered layout had slightly higher
absolute value of Ri number than square layout in the simulated
cases. In the future, the staggered layout with non-identical building
heights can be simulated to evaluate the influence of non-isothermal
conditions on airflow properties.
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Appendix A Illustration of the experimental set-ups for the two

CFD validation cases

Figs. A1 and A2

Fig. A1. Sketch of wind tunnel experiment for CFD validation under isothermal
condition in (a) horizontal plane and (b) vertical plane.

.

Fig. A2. Sketch of wind tunnel experiment for CFD
validation under non-isothermal condition in (a)
3D model and (b) vertical plane.
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Appendix B Summary of wind conditions, ambient air

temperature and Ri number at eight time of the day on the hottest

day of the selected five cities in China

City Month

Day of
the
month

Hour
(ToD)

Ambient air
temperature
( °C)

Wind
speed
(m/s)

Wind
direction
(°)∗

Richardson
number

Guangzhou July 31 00:00 25.2 0.4 210 −21.47
04:00 24.5 0.2 247 −108.89
08:00 27.1 0.2 286 26.28

12:00 35.2 5.1 277 0.35

16:00 38.1 7.4 291 0.09

20:00 33.5 6.5 278 −0.05
24:00 29.3 1.9 222 −1.00

Kunming July 9 00:00 19.4 3.2 205 −0.25
04:00 16.6 5 298 −0.06
08:00 17.9 1.3 194 1.13

12:00 25.9 3.9 188 1.30

16:00 29.8 5.7 294 0.26

20:00 27.2 3.2 291 −0.25
24:00 24.1 0.8 217 −5.77

Shanghai July 21 00:00 29 1.3 87 −1.96
04:00 29.3 1.5 109 −1.65
08:00 32.6 0.6 130 18.38

12:00 36.6 2.4 84 2.23

16:00 38 1.8 82 3.35

20:00 35.3 0.7 48 −9.77
24:00 31.7 0.3 84 −54.08

Beijing July 9 00:00 27 4.2 160 −0.17
04:00 25.1 5.9 253 −0.08
08:00 28.9 0.8 194 9.02

12:00 35.9 3.4 188 1.50

16:00 37.6 6.4 249 0.18

20:00 33.6 3 291 −0.15
24:00 27.1 0.4 217 −13.54

Harbin June 19 00:00 21.6 3.4 90 −0.45
04:00 20 4.5 245 −0.28
08:00 25.8 1.8 204 2.72

12:00 32.3 3.7 246 1.14

16:00 34.3 3.4 296 0.61

20:00 30.5 2.5 318 −0.76
24:00 24.6 1.3 265 −3.40

∗ 0 and 360 indicate north.
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This paper investigates the expansion of electric cars and their impact on the environment and the user; assuming
a future scenario where all of the light-duty vehicles that use an internal combustion engine will be replaced by
electric cars in Scotland. The idea is to investigate the impact on the environment and the financial effect on the
user. The methodology is based on analysing the most common electric and conventional vehicles to estimate the
amount of additional electricity that would be needed to charge that expansion. The paper has also looked at the
running costs. The results show that approximately 4 GWh per annum of additional electricity will be needed to
compensate for such growth in electricity demand. With the rise in electricity production, the amount of carbon
emissions from the electrical grid is expected to increase slightly by 0.47 megatons CO2 per annum. Given that
the carbon dioxide generated by the light internal combustion vehicles at the moment is 3.6 megatons of CO2
per year, it is concluded that the total amount of greenhouse gases from the electricity grid will decrease by
circa 33.7% if all conventional cars in Scotland are replaced by electric cars. The initial cost of an electric car
is found to be higher than conventional diesel or petrol one, but in the long term, the cost to power an electric
vehicle is expected to be much cheaper. However, electric cars still have their own drawbacks as they need
significant time to be charged, and will consume significant energy for heating the interior and windscreens to
prevent condensation in cold weather leading to an estimated reduction in range of approximately 28% in some
situations.

1. Introduction

The world population has been increasing dramatically over the past
few decades. With the growing population comes an increase in the
number of vehicles and therefore the growth of greenhouse gases re-
leased from traffic. To mitigate that challenge, scientists and engineers
are continuously working to improve conventional vehicles to enhance
their performance of using less fuel and hence releasing fewer green-
house gases to the atmosphere. Another solution on the horizon, and
expanding rapidly, is the development of electric cars. Electric vehicles
do not release any emissions, they require electricity to run and are
considered by many as an eco-friendly solution for the ever-growing
demand for more vehicles and more fuel. It is also a way to resolve the
growing greenhouse gas and pollution levels in the atmosphere released
from traffic. Other alternatives to conventional vehicles are hybrid cars
and hydrogen fuel cell vehicles.

It has been estimated that the global social cost for air pollution as-
sociated with combustion engines is about 3 trillion dollars per year [1].

∗ Corresponding author.
E-mail address: Amin.Al-Habaibeh@ntu.ac.uk (A. Al-Habaibeh).

The increase in carbon emission not only contributes to poor air qual-
ity, but also to an increase in global temperatures; which influences the
climate. In 2016, a new record has been set regarding the increase of
global temperatures, which led to about 1 °Celsius rise compared to the
20th-century average temperature [2]. The Paris Agreement on Climate
change provides the possibility for each country in the world to move
forward in decreasing its greenhouse gas levels towards enhancing air
quality. Investigating the reduction in greenhouse gas emissions by elec-
trifying transportation is essential, as more than 55 countries emit more
than half of the global emissions [1].

The availability of fossil fuel, particularly oil, is not sustainable;
hence integrating electric cars and enhancing the use of renewable en-
ergy would extend the time of oil’s availability, allowing other types of
transport such as airplanes and ships to utilise the available resources.
Moreover, the batteries of electric vehicles can be exploited as an addi-
tional grid storage reserve, where excess renewable energy can be stored
and balance the variation in electricity demand. These reserves could
also be utilised in emergencies or during unforeseen blackouts [3].
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A notable advantage that electric cars possess is their high efficiency
in energy use. They also produce zero emissions at point of use, which
contributes to considerable reduction of greenhouse gas emission from
the transportation sector [4].

Despite the advantage of electric cars, widespread implantation of
a fleet that consists mainly of EVs would lead to some challenges re-
garding the grid electricity generation system. Charging a high num-
ber of cars during peak hours could cause a considerable increase in
electricity demand, leading to a significant overloading on the grid. A
possible solution for that would be an adaptation of smart grid technol-
ogy and demand management into the grid’s infrastructure. This can be
achieved by scheduling the charging processes accordingly with prior-
ity policies by recognising the vehicles with higher urgency of recharg-
ing. This would aid in flattening the demand curve and hence avoiding
overloading the grid. Then, it is important to determine an appropri-
ate charging rate (i.e. power consumption) for all electric cars that are
connected to the grid [4].

The 2009 Climate Change Act for Scotland sets a target to decrease
greenhouse gas emissions by 2050 to 80% compared to the emission lev-
els in 1990. Five major steps were identified to achieve such goals [5].
These steps involve the reduction of fossil fuel usage and promoting the
implementation of more renewable energy, which would help in reduc-
ing greenhouse gas levels. By 2016, Scotland has managed to introduce
carbon capture and storage technologies. Also, the reduction of 12% in
electricity demand has already been achieved. In addition, the country
has closed the last operational coal power station shifting the electricity
production to nuclear and renewables [5].

Even in places where the main source of electricity to charge electric
cars is from fossil fuel, this would still have a positive impact on the
environment. In an experimental case study to charge electric cars in
Italy using electricity from fossil fuel, the amount of carbon emissions
did not exceed the EU traffic limits of 100 g/km [6].

Some of the disadvantages of electric cars are the long charging times
of the batteries, the relative short range of vehicles, and the high initial
cost. The running cost of electric cars is considered to be lower com-
pared to internal combustion engine cars, due to lower taxes the price
difference between electricity and fossil fuel [7].

This paper suggests a novel approach which investigates a scenario
where all conventional light-duty vehicles to be replaced by electric cars
in Scotland. Vehicles and energy-related data from the years 2015–2016
is chosen for this paper’s analysis. In order to properly investigate the
situation, a literature review has been conducted regarding the elec-
tricity consumption in Scotland. Greenhouse gas emissions from energy
generation and traffic pollution assuming the most popular cars among
the gasoline/diesel and the electric technologies are estimated. The as-
sessment of carbon emission when expanding renewable energy genera-
tion is also investigated. The paper also highlights a novel mathematical
modelling and the implementation of infrared thermography to estimate
energy losses in winter for electric cars and the effect on their travel
range.

1.1. Brief description of conventional and electric vehicles

The amount of emissions released by conventional vehicles depends
on the car’s condition and how it is used. Those types of vehicles burn
fuel to produce the energy which powers the engine. The fuel is drawn
from the tank into one of the engine’s cylinders. Each of the cylinders
draws petrol/diesel in sequences together with the necessary quantity of
air. The sparks, or pressure in case of diesel engines, ignite the mixture
of fuel and air resulting in sudden expansion in volume within the en-
gine’s pistons causing them to move to produce the necessary motion.
This motion from the pistons causes the driveshaft to be turned. The
driveshaft then moves the axles via the gearbox, and as a consequence
of that, the wheels of the car will rotate, producing the car’s movement.
The burnt fuel creates exhaust gases that are emitted into the atmo-
sphere [8]. In 1870, the first internal combustion engine powered by

Table 1

Sources of electricity in Scotland and their Carbon
Factor reproduced based on data from reference [16].

Source of electricity Carbon Factor (gCO2/kWh)

Nuclear 26

Coal 220

Gas 170

Hydro 7

Renewable 41.25

gasoline (petrol) was invented [9]. On the other hand, electric vehicles
do not require chemical fuel. They require electricity to charge their
batteries. The energy stored in the battery is utilised to power one or
more electric motors via a controller. The electric motor is responsible
for driving the vehicle’s wheels. Some models have two motors placed
on each axle of the car. Since electric vehicles do not use fossil fuels to
be powered, they do not produce any emissions [10]. It is well known
that at the end of the 19th century, electric cars were very common due
to the simplicity of the technology. It has been observed that in 1899,
90 percent of taxi cabs in New York were electric [11]. Electric Vehi-
cles (EVs) are considered to aid in reducing the levels of greenhouse
gas emissions, particularly on busy roads. Oil as a resource is limited,
and integrating electric cars will reduce the consumption of petroleum,
increasing the time for its depletion and allowing other modes of trans-
port, such as air and water to rely on oil. It has been suggested that
the batteries on electric vehicles can be exploited as an additional grid
storage system to store excess electrical energy to balance supply and
demand [12]. Even though electric vehicles are eco-friendly, there are
some challenges. One of them is the battery’s low capacity, as well as its
high cost. The small number of charging stations also poses a challenge
at the moment. If more people start to use electric cars, the electricity
demand from power stations will rise, hence contributing to greenhouse
gas emissions unless more renewable or green energy resources are de-
veloped to replace coal, oil, and gas.

1.2. Electricity and carbon emission in Scotland

According to surveys in the monitoring of greenhouse gas (GHG)
levels by the Scottish Government [13], about 20% of the greenhouse
emissions are from conventional cars. Approximately 97% of the green-
house gases are represented by carbon dioxide and a small amount by
nitrous oxides, methane, and fluorinated gases [13].

Annually the electricity consumption in Scotland is approximately
38,000 GWh. The country produces on average 50,000 GWh of electric-
ity and the amount that is not consumed locally is exported to England
and Northern Ireland [14]. Fig. 1 presents the electricity generated, by
source, between 2000 and 2016 and Fig. 2 shows the energy mix in
Scotland in 2015–2016.

It has to be mentioned that when electricity is generated and dis-
tributed, there are losses through the grid, and Scotland is not an excep-
tion; the losses of the grid for the country are estimated to be approxi-
mately 17% [15].

Each source of electricity emits a different amount of carbon dioxide
per unit of energy produced. The term used to describe this carbon foot-
print of the source of electricity is called the Carbon Factor. The unit
of carbon factor is gCO2/kWh. Table 1 presents the Carbon Factor for
each energy source.

Taking into consideration the generation mix for the period 2015–
2016, the carbon emissions from the electricity generation are estimated
to be approximately 5 MtCO2/year [14]. Depending on the generation
mix, the number of emissions would vary. A high number of countries
are focusing on building new nuclear power stations and utilising more
renewable resources to reduce carbon emission and air pollution.
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1.3. Traffic levels in Scotland

The average mileage per year of a vehicle in Scotland for the period
2015 – 2016 was roughly 11,362 km [17]. The number of vehicles in
the Scottish fleet for the same period was estimated to be approximately
2240,000 [17]. According to data from Scottish traffic monitoring, ap-
proximately 80% of the fleet consists of light-duty vehicles [18]. Ac-
cording to this, it was estimated that light-duty cars produce roughly
3.6 Mt Carbon emissions per year [14].

Preferable car brands play an important role in the number of re-
leased greenhouse gases. Every conventional vehicle brand releases a
different amount of carbon emission, and every electric car consumes
a different amount of electricity, therefore, the emission from the elec-
tricity generation will vary. Research in the electric vehicles market in
2015 for the UK has revealed that among the most popular cars in this
category were Nissan Leaf, BMW i3, Renault Zoe, Volkswagen e-UP, and
Tesla Model S. Table 2 presents the top 5 registered electric and their
specifications [19].

The same research has also been done for conventional light-duty
cars, alongside their specifications, as shown in Table 3.

When comparing between winter and summer, the wasted heat from
the internal consumption engine can be utilised to heat the passenger’s

compartment and prevent condensation on the windscreens. However,
electric cars will need to consume energy from the battery to provide
thermal comfort for passengers during cold weather. And the faster the
car, the more are the heat losses, hence reducing the range of the electric
car [21]. The winter in Scotland tends to be consistent with very little
variations in temperatures with an average minimum winter tempera-
ture of approximately 1 °C [22], see Fig. 3. This is expected to reduce
the electric vehicles’ range in winter.

1.4. Economics

From an economic perspective, the end-user is affected differently.
The amount of money that a car driver is spending annually varies, de-
pending on the type of vehicle, driven distance and driving conditions.
Conventional cars require fuel whereas electric ones need electricity.
The price of electricity and fuel is significantly different. The price of
electricity and fuel varies depending on economic conditions. For the
period between 2015 and 2016, that price was estimated to be around
12 pence per kWh of electricity [23]. For the same period, the price of
a litre of fuel in the UK was approximately £1.3 [24]. Because Electric
vehicles, plug-in EVs in particular, produce less than 50 gCO2/km are
considered emission-less [25]. For that reason, they are eligible to re-
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Table 2

Top 5 registered electric vehicles in the UK for 2015, reproduced based on data from reference [19].

Brand Battery capacity (kWh) Consumption (kWh/100 km) Number of registered cars in 2015 Price (£) Distribution (%)

Nissan Leaf 24 14 11,000 29,000 49

BMW i3 22 13 3574 38,000 16

Renault Zoe 22 11 3327 21,000 15

Volkswagen e-UP 18.7 14 2500 19,000 11

Tesla Model S 85 16.9 2000 75,000 9

Table 3

Top 5 registered conventional vehicles in the UK for 2015, their CO2 factor, price, Distribution, and average fuel
consumption, reproduced based on data from reference [20].

Vehicle model CO2 (g/km) Price (£) Distribution (%) Number of registered cars Consumption (L/100 km)

Ford Fiesta 147 15,400 30 133,434 4

Vauxhall Corsa 129 10,800 21 92,077 4.7

Ford Focus 159 18,000 19 83,816 3.7

Volkswagen Golf 112 20,600 16 73,409 3.9

Nissan Qashqai 162 19,800 14 60,814 4
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Fig. 3. The average monthly temperatures in Scotland repro-
duced based on data from reference [22].

ceive a 35% grant from the price of the electric car as a subsidy, which
in most cases is reduced from the price of the vehicle. The maximum
amount of that subsidy is £3500 [25].

1.5. Aim

This paper aims to determine what would be the impact on elec-
tricity demand, carbon emission and running and ownership costs, in a
proposed scenario where fossil fuel light-duty vehicles are replaced with
electric ones in Scotland.

2. Methodology

In order to find out what the effect of switching to electric cars would
be, the methodology is divided into three parts: energy demand, carbon
emissions, and costs.

2.1. Energy demand

The literature review has provided information on how much elec-
tricity is produced in Scotland annually and how much is the demand in
a year. The number of light-duty cars is presented for the period 2015
– 2016. The first step of the methodology is to determine the increase
in demand for electricity when moving from fossil fuel to electricity.
In order to acquire an appropriate number, it has been found impor-
tant to discover what are the most popular electric cars for Scotland,

Eq. (1) is utilised to determine the average value of electricity consump-
tion among the most popular electric cars based on the market share for
each brand and its specifications. The equation is as follows:

𝐸𝐶𝑡𝑜𝑡𝑎𝑙 =
𝑛∑
𝑖=1

(
𝐸𝐶𝑖 × 𝑃𝑃𝑖

)
(Eq. (1))

Where EC represents the Electricity consumption (kWh/100 km) and
PP is the Percentage Proportion of the vehicles according to the brand’s
popularity, represented as (value)% per 100; n is the number of cars
included in the investigation.

Knowing how much is the annual mileage done by a car and how
much is the average energy consumption of electric cars, the energy
demand of a single car can be determined as:

𝑅𝐸 = (𝐴𝐷𝑇 ÷ 100) × 𝐴𝐸𝐶 (Eq. 2)

Where, RE represents the Required Electricity for a single electric car
(kWh), ADT is the Annual Distance Travelled (km), and AEC is the Av-
erage Electricity Consumption of an electric car (kWh/100 km). After
determining RE, it is multiplied by the number of light-duty vehicles
(2240,000). Through the literature review, the losses through the elec-
tricity grid have been established to be 17% which will be lost from the
total electricity generated, hence 17% additional energy will need to be
generated to compensate for that.

Determining the required variables, Eq. (2) will determine howmuch
electricity a single car on average would need. By multiplying that value
by the number of light-duty cars in Scotland, the annual electricity re-
quired to power all the electric vehicles for a year can be determined.

207



G. Milev, A. Hastings and A. Al-Habaibeh Energy and Built Environment 2 (2021) 204–213

Fig. 4. The infrared image of the tested car
during winter with calibrated temperatures
based on the measured values from the tem-
perature data logger.

It has been found also important to include the grid losses, which will
give a more accurate value of the required future energy. Both current
and future scenarios of electricity generation will be compared in this
paper.

2.2. Heating of car’s passenger compartment

Electric Vehicles will need to consume some of the power from the
battery for heating the passengers’ compartment. Hence, heating will
affect electricity consumption and the available range. When consider-
ing the average interior space volume of light-duty vehicles, it has been
estimated to be 2.93 m3 [26]. Assuming the internal temperature is kept
at 21 °C as the desired temperature, the minimum average ambient tem-
perature in Scotland during the winter season is estimated to be 1 °C
[22]. The following equation hence can be used to determine the heat
required to warm up the car’s interior:

𝐸 = 𝑚 × 𝑐 ×
(
𝑇𝑑 − 𝑇𝑐

)
(Eq. (3))

Where: E is the energy required to reach the desired temperature Tc; m
is the mass of air inside the car; c is the specific heat capacity of the air
inside the car in J/kg. °C; and Td is the desired temperature in °C.

Before applying Eq. (3), the mass of air (m) is determined using the
following calculation:

𝑚 = 𝜌 × 𝑉 (Eq. (4))

Where 𝜌 is the density of the air in kg/m3; and V is the volume of the
car’s interior space volume in m3.

The heat losses through the windows and external envelop are cal-
culated using Eq. (5) [27]:

𝑃 = 5.67 × 𝜀ℎ𝑜𝑡 ×

[(
𝑇𝑖

100

)4
−
(
𝑇𝑜𝑢𝑡

100

)4
]
+ 3.8054 × 𝜗 ×

(
𝑇𝑖 − 𝑇𝑜𝑢𝑡

)

(Eq. (5))

Where: P is the thermal power loss through convection and radiation
in W/m2; ɛhot is the emissivity which for glass is 0.93 [28] and for
iron/aluminium is 0.29 [28]; Ti is the surface temperature in K; Tout
is the ambient temperature in K; 3.8054 is the convection heat transfer
coefficient in W/m2.K; ϑ is the wind speed in m/s. For ϑ the speed of a
car is chosen to be on 60 miles/h or 97 km/h, which is in SI units will
be 27 m/s.

In order to determine Ti for the windows’ surface and the car’s body
surface properly, a thermal image of a vehicle is taken and a temperature
data logger was attached to the external body of the car to evaluate the
temperature performance. The car was driven at 60 miles per hour and

the external surface temperature of the car was measured. Fig. 4 presents
the infrared image of the car, with calibrated temperature readings. The
results have indicated that Ti for the windows was 9.9 °C and the vehi-
cle’s body surface was 5.5 °C. The authors have used a diesel engine car
to estimate the windows and body temperature when the internal com-
partment is at 21 °C. The assumption is that an electric car will need to
maintain the same internal temperature from the batteries for a similar
journey and weather conditions.

Eq. (5) is used for the total windows and windscreens area which
is estimated to be at a temperature of 9.9 °C and an area of 2.96 m2;
and also for the car body (doors and panels) which is estimated to have
an area of 5.57 m2 [29] and at a temperature of 5.5 °C. Eq. (4) is used
to calculate the energy needed to keep the passengers’ compartment at
a temperature of 21 °C with the assumption that the driver is the only
person on-board without other passengers. This analysis will provide
the amount of energy that will be needed from the battery to keep the
driver at a comfortable temperature and prevent condensation on the
windscreen (ignoring any electric heaters used directly to heat the wind-
screen). This is expected to influence the actual range of the car in cold
weather and the analysis will provide an insight into this. The average
range of an electric car is calculated using Eq. (1) to determine the aver-
age battery capacity and Eq. (2) to find out the average range of an EV.
Eq. (2) is used to calculate the range when the heating is needed and
to compare the range in warm weather when heating is not needed but
ignoring air conditioning systems for cooling). The analysis assumed the
driver’s body will produce 100 W of heat while in the car.

2.3. Carbon emission

The literature review has provided useful information on how much
carbon emission light-duty vehicles produce and the carbon factor of
each source of electricity in Scotland for the period of 2015–2016, and
the information needed on how much electricity Scotland produces per
annum and the carbon factor of each source. The carbon emission level
can be calculated for each energy source using Eq. (6):

𝐶𝐸 = 𝐴𝐸 × 𝐶𝐹 (Eq. (6))

Where CE is the Carbon Dioxide Emission from the electricity production
in kg; AE is the amount of electricity in kWh; and CF is the carbon factor
of the source of energy in kgCO2/kWh. To simplify the presentation of
figures, the Carbon Emission values are presented in kilotons (kTons).

Following the calculation of the carbon emission from each source,
the total carbon emission for each scenario is calculated taking into
consideration the electricity generation mix by percentages and an es-
timated 17% of grid losses. Using the same methodology as above,
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the amount of carbon emission from the additional energy generation
needed for electric cars is calculated. Hence, the carbon emission level
between the current time period (2015–2016) and the possible future
scenario of electricity generation is considered. From the literature re-
view, it has been found that the CO2 emission from the current traffic
is about 3.6 Megatons (MTons) per year.

2.4. Initial and running costs

It has been found essential to estimate the ownership and the run-
ning cost of electric cars in comparison to conventional technology.
Eqs. (1) and (2) are utilised to determine the average fuel consump-
tion among conventional cars in Scotland and how much fuel the to-
tal amount of light-duty vehicles in Scotland would need. Such values
are needed in order to calculate the cost of fuel for a year per vehicle.
Knowing consumption values and the price of fuel (£/L) and electricity
(£/kWh), the cost of running an electric car versus a conventional car
can be compared.

3. Results

3.1. Energy demand

Using Eq. (1), the average electricity consumption among popular
electric cars in Scotland is calculated to be 13.65 kWh/100 km. This
value is used in Eq. (2), which allowed us to determine the annual energy
required for a single electric car, which is estimated to be 1551 kWh.
By multiplying the required energy per vehicle to the number of light-
duty vehicles on the road (2240,000 vehicles), the total energy required
for all the electric cars in Scotland would be 3474,045,120 kWh, or
simply 3474 GWh. The grid loss of 17% has been considered as well to
get a more accurate value for the required energy that will need to be
produced. Hence the total energy to be generated is 1.17 × 3474 GWh,
making the minimum future energy generation to be 4065 GWh. Fig. 5
presents the electricity production needed in both scenarios.

3.2. Car heating

The power needed to heat the car’s interior during the winter, in-
cluding heat losses through windows and car’s body surface; assuming
a car speed of 60 miles per hour and the ambient temperature of 1 °C, is
calculated to be 5.36 kW. Which when expressed in terms of range, this
will be equivalent to a reduction in the range of about 28%, given the
above-assumed conditions and that only the driver is on-board. Fig. 6
presents an example of the expected difference in the range of an elec-
tric vehicle during cold and warm seasons due to the power needed to
heat the car’s interior and windscreens in cold weather.

3.3. Carbon emissions

By applying Eq. (6), the carbon dioxide emission from the electricity
generation produced from each source for the period of 2015–2016 and
in the case of the future scenarios are presented in Table 4 and Fig. 8,
which compare between five scenarios of carbon emissions of Scotland,
as follows:

(a) The current scenario with the current energy mix (the current num-
ber of conventional cars).

(b) A future scenario of carbon dioxide emission, assuming the same
current energy mix, for the additional electricity to charge the new
electric cars.

(c) A future scenario of carbon dioxide emission with fixed current coal
production levels but no further energy coal production for the ad-
ditional energy.

(d) The assumed current scenario of carbon dioxide emission if the en-
ergy from coal is replaced by other sources as relative benchmark.

(e) A future scenario of carbon dioxide emission when no electricity is
produced from coal and the rest of the energy mix maintains the
same energy ratio.

Adding the additional amount of CO2 emissions to the current sce-
nario, (scenario a), reveals that the future carbon dioxide levels would
be approximately 5503.3 kTons for the same energy mix (scenario b).
It is expected that coal will be phased out either only for the additional
energy produced for electric cars (scenario c); or completely eliminated
(scenario e), where more renewable and nuclear energy will be utilised
to generate electricity.

Scenario (d) is an assumed scenario for the current carbon emission
from the electricity grid when coal is eliminated from the energy mix
while maintaining the same ration of other energy sources. This sug-
gests that carbon emissions from the grid will be reduced as renewable
energy produce about 47.25 gCO2/kWh, whereas coal is emitting ap-
proximately 220 gCO2/kWh.

The resultant carbon emission and percentage of energy mix are pre-
sented in Fig. 7, where scenario (e) could be achieved by removing all
coal from the mix, this should achieve a reduction in carbon dioxide
emission of about 5089.50−3372.94

5089.50 = 33.7%.
From Fig. 8, it can be concluded that the total amount of emissions

from traffic and electricity production combined will decrease when
electric cars are implemented in the Scottish fleet. This is an estimated
decrease of approximately 27.2−24.1

27.2 = 11.4%, this is the overall reduction
from all sectors combined including residential, grid, transportation, in-
dustrial and agriculture.
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Table 4

The amount of CO2 emitted from the electricity generation produced from each source for current and future scenarios.

Scenario (a) Current
Emissions

Scenario (b) Future
Emissions (assuming
current% of energy mix)

Scenario (c) Future
Emissions (with fixed coal
production levels)

Scenario (d) Current Emission
(assumed replacement of all coal
energy sources)

Scenario (e) Future
Emissions (no coal
sources)

Source Emissions per source

(kTons CO2/year)

Emissions per source

(kTons CO2/year)

Emissions per source

(kTons CO2/year)

Emissions per source (kTons

CO2/year)

Emissions per source

(kTons CO2/year)

Nuclear 442 447.94 489.91 589.33 637.25

Coal 2750 2973.59 2750 0 0

Gas 1615 1746.3 1790.07 2153.33 2328.4

Hydro 35 37.85 38.79 46.67 50.46

Renewables 247.5 267.62 274.33 330 356.83

TOTAL 5089.5 5503.3 5343.1 3119.33 3372.94

Annual Energy 
Generated 

(GWh)
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Fig. 7. A comparison between five scenarios of carbon diox-
ide emissions from electricity generation.
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3.4. Estimated costs of ownership and use

The application of Eq. (1). Eq. (2) has revealed that a petrol/diesel
car would need approximately 483 Litres of fuel in order to cover the
expected annual mileage of 11,362 km per vehicle. For the same dis-
tance, an electric vehicle would need about 1551 kWh to cover the re-
quired distance per annum. Taking the price of fuel and electricity into
consideration, the results are presented in Fig. 9 where the estimated
running costs of a petrol/diesel fuel and electric vehicle are estimated
to be £602 and £186 respectively. Hence, it is clear that electric cars are
about 69.1% cheaper to be powered. In this analysis, maintenance costs
are ignored for both types of vehicles.

Fig. 10 presents the initial ownership cost of both types of vehicles.
Currently, it is estimated that electric cars are currently 97% more ex-
pensive than conventional ones without any subsidy.

Since the maximum subsidy of an electric vehicle that can be granted
in the UK is £3500, Fig. 11 presents the overall cost indicating electric
cars to be only 75.7% more expensive.

4. Discussion

This paper has looked at a case study scenario where every light-
duty vehicle in Scotland is assumed to be replaced by an electric car.
The investigation and the calculations are based on the popular brands
and models of both types of vehicles for the period of 2015–2016. For
popular cars, the number of registered ones in 2015 is considered. In
the future, changes can be expected, because new and more efficient
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Fig. 10. The initial cost comparison between electric and conventional cars.

vehicles may appear in the market. Due to such expected changes, the
prices of vehicles and fuel/electricity may vary through the years. Car
models that have been considered new for that period will drop in price
with time. The situation with the price of electricity and fuel is simi-
lar, their price varies slightly through the years. When the demand for
electricity increases it is expected that its cost might rise as well. Since
2016 the prices of electricity from solar panels and wind turbines have
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significantly decreased. In fact, nowadays wind energy is considered to
be the cheapest source for electricity production. According to Wind
Europe [30], the cost of offshore wind is expected to decrease to €60
(£55)/MWh by 2025. Bloomberg New Energy Finance (BloombergNEF)
also predicted that by 2022 the ownership cost of electric cars will de-
crease below the conventional diesel and petrol ones. In addition, the
cost of lithium-ion batteries has dropped by 65% between 2010 and
2016 and it is expected that by 2030 the price of EV batteries will drop
below $120/kWh (circa £98/kWh) [31].

Regarding the economic point of view, this paper has not taken into
consideration the maintenance cost of conventional and electric vehi-
cles, more specifically the engine and battery life. Another important
point excluded from this paper is the fact that Battery EV (Plug-in EV)
owners are exempt from road tax [32]. From the economic perspective,
another point which is not taken into consideration is the cost of the
charging stations that owners may pay for. Those costs normally include
a monthly fixed fee and a demand charge [33].

In March 2016, Longannet, the 2400 MW coal-fired power station
was closed, leaving Scotland with very little energy generated from that
source [34]. Since then the country distributed that demand across gas
and wind energy. This has led to a more sustainable future which is
discussed in this paper causing a positive prediction regarding carbon
emissions from the energy generation sector. CO2 levels are expected to
be reduced over the coming years in Scotland. Hence, further research
in the area will be required when more renewable energy is added to
the grid [35]. As for the emissions in Scotland, only values from the
traffic and the electricity generation are considered in this paper. The
emission from the manufacturing of both types of cars is not considered
in this paper. Research show that there are no significant difference in
the carbon emission; however, electric cars require slightly more carbon
to be manufactured due to the battery [36]. However, life-cycle assess-
ment of both types of vehicles should be investigated further in order
to acquire more accurate numbers on the long term, given the expected
improvement of the technology of the battery.

The production of electric car batteries contributes to the genera-
tion of carbon emissions, which has not been taken into consideration
in this paper. Conventional vehicles do not only contribute directly to
CO2 emissions by burning the fuel, but also indirectly by the extraction
of oil, its process operations, and the transportation of gasoline/diesel
to the gas stations, which all produce carbon emissions. That is not in-
cluded in this investigation either. Moreover, the additional energy that
will be needed for heating during cold seasons is not included in the
analysis of energy demand for electric cars, and it will be the subject of
futures studies due the variation in weather conditions. Further research
is still required to explore further the effect of the electric cars on the
environment, and their cost impact on the owners.

5. Conclusion

The scenario of replacing all diesel and petrol light-duty vehicles in
Scotland with electric cars would have diverse pros and cons. As a result
of the massive expansion of electric vehicles, the electricity demand will
be expected to rise and hence the production of more energy leading to
a slight increase in carbon emission levels. Although the CO2 levels are
expected to rise in such a situation, the traffic emissions will decrease
significantly because there would not be any light-duty vehicles to pol-
lute during operation. Therefore, this will lead to a reduction in the total
amount of carbon emissions from the electricity grid by approximately
33.7%.

In addition, during cold weather, owners would need to use the elec-
tric heating of the car, which uses energy from the battery, this is ex-
pected to reduce the range by 28%.

With extended utilisation of electric vehicles, owners would spend
more money as an initial cost compared to conventional cars (about
75.7%%) even with the EV subsidy in the UK. In the long term, electric
vehicles would save money to their owners, because of the considerably
low price of electricity compared to that of petrol and diesel fuel, with
estimated savings of about 69.1% per annum.

All in all, the extended usage of electric vehicles in such scenario
is expected to have a positive impact on the environment. Although,
it depends on what the electricity generation mix is. The more eco-
friendly sources are used to generate electricity, such as renewables and
nuclear power plants, the more the positive impact would be. One of
the main advantages is reducing pollution on busy roads and in cities,
which should contribute to better public health conditions.
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a b s t r a c t

A transparent radiative cooling (T-RC) film with low transmittance in solar spectra and selectively high emissivity
in the atmospheric window (8–13 𝜇m) is applied on roof glazing for building energy saving. To evaluate the per-
formance of the T-RC film, two identical model boxes (1.0m × 0.6m × 1.2 m, L ×W × H) were constructed and the
inside air temperatures were measured in August in Ningbo, China. Results show that the maximum temperature
difference between the two model boxes with and without the T-RC film was 21.6 °C during the experiment. A
whole building model was built in EnergyPlus for the model box. With a good agreement achieved between the
calculation results and the measured temperature data, the experimentally validated EnergyPlus model was then
extended to an 815.1 m2 exhibition building with roof glazing to analyze the annual air conditioning (AC) energy
consumption. The results show that by incorporating both the T-RC film’s cooling benefit in summer and heating
penalty in winter, the annual AC energy consumption of the exhibition building can be reduced by 40.9–63.4%,
varying with different climate conditions.

1. Introduction

Energy saving and environment protection are critical issues in the
world today. Buildings account for 20–40% of total energy consumption
in different countries [1–3]. In hot climates, up to 50% of the building
cooling load could come from the large amount of solar energy pass-
ing through glazing systems [4–6]. Therefore, it is desirable to realize
building energy saving through adjusting thermophysical properties of
the glazing systems, especially for those buildings with large areas of
roof glazing systems.

The overall heat transfer coefficient (h), which characterizes air to
air heat transfer through the glazing system, can be reduced by an order
of magnitude through coatings, increasing thickness of glass pane, using
multiple glass panes, increasing the gap between the glass panes, as well
as using extremely low thermal conductivity materials in the gap [7–
9]. Researchers have also focused on adjusting optical properties of the
glazing systems to reduce solar heat gain, which can reach 1000 W/m2

in hot climates [10]. A low solar heat gain coefficient (SHGC) can sig-
nificantly reduce the initial investment and operational cost of air con-
ditioning (AC) system [11–14]. In the meantime, visible transmittance

∗ Corresponding authors.
E-mail addresses: ichi0014@hotmail.com (J. Xu), dongliang_zhao@seu.edu.cn (D. Zhao).

(Tv), a factor that determines visibility of glazing material, should be
maintained at a relatively high level to avoid additional energy con-
sumption for artificial lighting [13]. Therefore, the ideal optical proper-
ties of selective transmission spectra in solar irradiation range are: zero
transmittance in the ultraviolet (0.3–0.4 𝜇m) and the near-infrared (0.7–
2.5 𝜇m) range, and enough transmittance (usually > 0.6) in the visible
range (0.4–0.7 𝜇m). A few technologies, for example, tinted glazing,
coated glazing, and window films, fall in this category [7,9].

Emissivity is another important thermophysical property for glass
pane thermal radiation in the mid-infrared range (2.5–20 𝜇m). The well-
known low emissivity (low-e) coating exhibits relatively low SHGC and
high reflectance (low emissivity) in the mid-infrared range. By reflecting
thermal radiation from outdoor (in summer) and indoor environment
(in winter), the low-e coatings achieve energy saving by maintaining
relatively stable indoor temperatures [15–17]. However, it may hinder
heat dissipation in summer when temperature of the glass pane is high.
Therefore, the low-e coating technique is not always favorable for build-
ing energy saving in all climates.

Glass pane that has high selective emissivity in the atmospheric win-
dow (8–13 𝜇m) is more beneficial for reducing building cooling load in

https://doi.org/10.1016/j.enbenv.2020.07.003
Available online 26 July 2020
2666-1233/Copyright © 2020 Southwest Jiatong University. Publishing services by Elsevier B.V. on behalf of KeAi Communication Co. Ltd. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Fig. 1. The spectral curves for the silica glass with and without the T-RC film: (a) solar transmittance; (b) infrared emissivity; (c) a photo of the T-RC film.

hot climates. Radiative sky cooling phenomena allows such glass pane
to emit mid-infrared electromagnetic waves directly to the outer space
through the atmospheric window [18-29]. Regular silica glasses usu-
ally have a high emissivity with a dip in 8–13 𝜇m wavelengths region
(see Fig. 1b), which absorb considerable thermal radiation from the at-
mosphere and the ambient environment. A glazing system with selec-
tively high emissivity (~0.9) in 8–13 𝜇m and low emissivity in 2.5–8 𝜇m
and 13–20 𝜇m wavelengths region can significantly reduce absorption
of thermal radiation outside the atmospheric window while enhancing
the radiative sky cooling effect. Installing such a roof glazing system in
public buildings, such as exhibition halls, shopping malls, libraries, and
sports stadiums, can be an effective way for building energy saving.

Earlier radiative cooling films achieve cooling effect through simul-
taneously solar reflection and infrared emission [30–33]. Therefore,
these films are opaque in the visible wavelengths, which make them
not appropriate for glazing applications. In this study, a transparent ra-
diative cooling (T-RC) film, which is different from opaque radiative
cooling films [23], is applied on roof glazing for building energy sav-
ing. The T-RC film has almost ideal optical properties: transparent for
visible light with a small SHGC in the solar spectra, and high emissiv-
ity (~0.9) in the atmospheric window and low emissivity in 2.5–7 𝜇m
and 13–20 𝜇m wavelengths. The unique optical properties of the T-RC
film make it appropriate for glazing systems. More importantly, the film
can be fabricated by the mature roll-to-roll method at low cost, which
makes it suitable for large scale deployment. To evaluate the perfor-
mance of the T-RC film, two identical model boxes were constructed
and the temperatures of air inside were measured in August in Ningbo,
China. Results show that the maximum temperature difference between
the two model boxes with and without the T-RC film was 21.6 °C during
the experiment. A whole building simulation model was built in Energy-
Plus to reproduce the measured temperatures for the model boxes. After
validation of the simulation model, it was then extended to an 815.1 m2

exhibition building with roof glazing to analyze the annual building air
conditioning (AC) energy saving with the T-RC film. By incorporating
both the T-RC film’s cooling benefit in summer and heating penalty in
winter, the annual AC energy consumption of the exhibition building
can be reduced by 40.9–63.4%, varying with different climate condi-
tions, which suggest that the T-RC film can be applied on roof glazing
systems for building energy saving.

2. System description and modeling

2.1. The transparent radiative cooling (T-RC) film

The 0.2-mm-thick T-RC film is a hybrid metamaterial made of
polyethylene terephthalate (PET) and silica microspheres [23]. The sil-
ica microspheres are randomly distributed in the PET matrix. The de-
tailed manufacturing process can be found in our previous work [23].
Figs. 1a and 1b show the solar spectral transmittance and the mid-
infrared spectral emissivity of an 8-mm-thick silica glass with and with-

out the T-RC film. Fig. 1c shows a photo of the T-RC film. After apply-
ing the T-RC film, the 8-mm-thick silica glass shows almost ideal opti-
cal properties: low SHGC (~0.4), appropriate visible transmittance Tv
(~0.63), and selectively high emissivity (>0.90 in 8–13 𝜇m wavelength
range). Up to now, 10 months of outdoor aging test show less than 0.2%
change in T-RC film optical properties, and 750 h of accelerated aging
test (85 °C temperature, 70±10% relative humidity, and 180 W/m2 UV
intensity) show less than 0.5% change in optical properties. According
to [34], 250 h of artificial accelerated aging test is equivalent to about
1 year of nature outdoor aging. Therefore, it is concluded that the T-RC
film should have less than 0.5% change of optical properties in 3 years
in outdoor conditions.

2.2. Experimental setup

Two identical model boxes were built, as shown in Fig. 2. The di-
mension of the two boxes was 1.0 m × 0.6 m × 1.2 m (L × W × H).
50-mm-thick XPS thermal insulation was used on the interior walls and
floors. The top glazing of the model box A was 8-mm-thick silica glass,
and the top glazing of the model box B is the same glass covered by the
T-RC film, as shown in Figs. 2a) and 2b). The detailed parameters of the
model boxes are listed in Table 1. The model boxes were placed on a
flat and unsheltered roof in Ningbo, China.

Three K-type thermocouples were used in each model box to mea-
sure temperature of the air inside with their positions shown in Fig. 2c.
A weather station (Model NHQXZ601) was used to measure the local
weather conditions, i.e., ambient temperature, solar irradiation, humid-
ity, and wind speed. The recording time interval of the abovementioned
parameters is one minute.

Fig. 3 gives the schematic diagrams of the heat transfer processes
between the two model boxes and the ambient. With the T-RC film ap-
plied, more incoming solar irradiation is reflected, and at the mean-
time, radiative sky cooling effect is enhanced, which results in a lower
air temperature inside. In the morning, the solar heat gain through the
glass increases with the increase of the solar irradiation, yet, heat con-
duction, convection, and radiation energy coming out of the glazing is
not enough to dissipate the absorbed solar energy. Therefore, the inside
air temperature rises until when the solar irradiation peaks. After then,
the heat conduction and convection start to play a major role with the
decreasing of the solar irradiation. And the inside air temperature de-
creases accordingly. This trend will last until sunset. Then, the radiative
sky cooling plays a primary role and the inside air temperature con-
tinues to drop till the next sunrise. The difference in solar heat gain,
heat conduction, radiative sky cooling, and convective cooling of the
top glazing results in different air temperatures inside the two boxes.

2.3. Experimental results

To evaluate the cooling performance of the T-RC film, measurement
of the inside air temperatures in the two model boxes were conducted
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Fig. 2. The experimental platform of the two model boxes: (a) exterior view; (b) interior view; (c) the positions of the thermocouples.

Table 1

Detailed envelope information of the model boxes.

Components Envelope (from exterior to interior) Thermal conductivity W/(m K) Density (kg/m3) Specific heat [J/(kg•K)]

Wall Glued wood (20 mm) 0.17 600 1200

XPS (50 mm) 0.042 30 1386

White wallpaper (-) – – –

Floor Glued wood (20 mm) 0.17 600 1200

XPS (100 mm) 0.042 30 1386

Roof Box B: T-RC film (0.2 mm) covered on the silica glass (8 mm) 0.5 (film), 1.04(glass) 1.4 (film), 2100 (glass) 2.2 (film), 740 (glass)

Box A: Silica glass (8 mm) 1.04 2100 740

Glazing

Transmission

Reflectance

Sun

Radiative 

cooling

Glazing

Transmission

Reflectance

Sun

TRC film

Radiative 

cooling

qsol

qcond

qrad
qrad

qcond

qsol

(a) (b)

Fig. 3. Schematic of solar irradiation and heat transfer through the
two boxes: (a) a typical silica glazing; (b) the T-RC-film-covered
glazing.

on August 15th to 16th, 2019, as shown in Fig. 4. The meteorological
data during the experiments were also recorded, as shown in Fig. 5.
Figs. 4a−4c) show the inside air temperatures at points 1–3 of the boxes
respectively, and Fig .4d) shows the average inside air temperature. The
average temperature was used as the inside air temperature to analyze
the difference between the box A and box B, as well as the model vali-
dation.

The inside air temperatures of the box A and box B decrease from
sunset to sunrise. The inside air temperature of box B was slightly lower
than that of box A at night due to higher emissivity of the T-RC film
in the atmospheric window. When the sun rises, as solar irradiation in-
creases, the inside air temperature differences of these two model boxes
sharply increase due to the different optical properties of the glazing
with and without the T-RC film in solar transmittance and infrared emis-
sivity. The variation trend of the inside air temperature was almost con-
sistent with that of the total solar irradiation. As shown in Fig. 5, the
total solar irradiation fluctuates violently from 10:00 to 14:00, Aug 15th.
Accordingly, inside air temperatures in both Box A and B fluctuate vi-
olently. Due to the high solar transmittance, the increase and decrease

rates of the inside air temperatures of box A was higher than that of box
B. The peak inside air temperature of box A was 79.6 °C, while that of
box B was 61 °C. The maximum temperature difference between these
two model boxes was 21.6 °C. And the inside air temperature of box B
was always lower than that of box A due to the adjusted solar transmit-
tance and selective absorptance in infrared wavelengths.

Furthermore, according to the experimental results, the temperature
stratifications were 8.5 °C and 3.7 °C for the box A and box B, respec-
tively, as shown in Fig. 4a)−4c). The improvement in temperature uni-
formity of box B should also owe to the adjusted solar transmittance and
selective absorptance at the infrared wavelengths. Predictably, with the
application of the T-RC film, not only building’s AC energy consumption
can be reduced, but also occupant thermal comfort can be improved.

2.4. Validation of the EnergyPlus model

The whole building simulation software EnergyPlus (version 8.7) is
used to predict the temperature of air inside the two model boxes. En-
ergyPlus is a reliable whole building simulation tool that researchers
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Fig. 4. Field-measured inside air temperatures of measuring point
1 to 3 and their average value.

Fig. 5. Measured meteorological data during the experiments.

worldwide use to model energy consumption in buildings. For the model
boxes, the input parameters for the EnergyPlus model such as dimen-
sions (see Fig. 2), envelope parameters (see Table 1), optical charac-
teristics (see Fig. 1), and weather data (e.g., ambient temperature, wind
speed, and solar irradiation) are set to be the same as in the experiments.
The inside air temperatures obtained by using the developed simulation
model were validated by comparing with the experimentally measured
air temperatures.

Fig. 6 gives the comparison of inside air temperatures obtained by
the simulation model and the experiments (the average temperature, see
Fig. 4d)). The maximum absolute deviation between simulated and ex-

perimental data for the model boxes were 2.5 °C (box A) and 2.7 °C (box
B), respectively. Larger deviations usually occur at night and at the time
when solar irradiation experiencing strong fluctuation (e.g., sunrise and
sunset). Two representatively statistical indicators were used to assess
the accuracy of the developed model [35]. The normalized mean bias er-
ror (NMBE) can better reflect the actual error of the predicted value, and
the coefficient of variation of the root-mean-square error, CV(RMSE), is
used to measure the deviation between the simulation data and the ex-
perimental data. Limits of the NMBE and CV(RMSE) are ± 10% and 30%,
respectively [36]. The NMBE and CV(RMSE) are given by Eqs. (1),(2).

𝑁𝑀𝐵𝐸 =
∑𝑛

𝑖=1
(
𝑇𝑠𝑖𝑚,𝑖 − 𝑇𝑒𝑥𝑝,𝑖

)

𝑛
× 100%

�̄�
(1)

𝐶𝑉 (𝑅𝑀𝑆𝐸) =

√∑𝑛

𝑖=1
(
𝑇𝑠𝑖𝑚,𝑖 − 𝑇𝑒𝑥𝑝,𝑖

)2
𝑛

× 100%
�̄�

(2)

where Tsim,i and Texp,i are the simulated and experimental value for the
i period (hourly), respectively; n is the number of the measured value;
�̄� is the mean of the measured values.

The NMBE between simulated and experimental data for the two
model boxes are 2.15% (box A) and 2.10% (box B), respectively, and
the CV (RMSE) are 3.81% and 3.72%. Therefore, the simulation model
developed by EnergyPlus agrees well with the experiments.

3. Model of an exhibition building with roof glazing

3.1. Building description

The simulation results of the box model developed by EnergyPlus
was validated by themeasured data. And it was then extended to a build-
ing with roof glazing, which is a part of a real building (built in 1986)
located in Ningbo, China, as shown in Figs. 7a and 7b, to calculate the
indoor air temperature and the annual AC energy consumption by using
the T-RC film (0.2-mm-thick, see Table 1) on the roof glazing system.
The real building has three floors at the east and west adjacent to the
glazing-topped exhibition, but has only one floor for the glazing-topped
exhibition. This study focuses on the energy saving of the glazing-topped
exhibition by using the T-RC film. The exterior dimensions of the build-
ing model are 21.36 m × 38.16 m × 16 m (L × W × H), and six win-
dows (2.1 m × 2.5 m, L × H) are installed on the north and south walls,
respectively, as shown in Fig. 7c. As a base case, the original glazing
system of the building model, with a glazing area of 878.1 m2 (roof
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Fig. 7. a) The building is located in Ningbo, China, (b) A closer view of the exhibition building’s roof glazing, (c) Schematic diagram of the exhibition building
model in EnergyPlus.

Table 2

Summary of the given boundary conditions of the simulation exhibition building model.

Items Values

Lighting [37] 5 W/m2, daily from 17:00 to 22:00

Maximum occupant density [38] 0.16 person/m2, 180 W/person, daily from 08:00 to 22:00

Cooling set point temperature [39] 25 °C, daily from 08:00 to 22:00

Heating set point temperature [40] 18 °C, daily from 08:00 to 22:00

Infiltration rate,% 30

COP of AC system 3.0

and windows), consists of a double-pane clear silica glass (6-mm-thick)
with an air gap (12-mm-thick), has an overall heat transfer coefficient
of h = 2.43 W/(m2•K)). The east and west walls are the internal walls of
the building, which are set to be adiabatic in the building model. To in-
vestigate the energy saving potential with the T-RC-film-covered glazing
in different climate conditions, four cities in hot summer and cold win-
ter region (i.e., Hangzhou, Chongqing, Shanghai, and Nanjing), and four
cities in hot summer and warm winter region (i.e., Fuzhou, Shenzhen,
Nanning, and Haikou) are selected in China. The thermal conductivity of
all envelopematerials meets the requirement of buildings standards. The
detailed information of the building envelope is listed in Supplementary
Table 1 and Table 2, where 𝛿, 𝝀, and h are thickness, thermal conduc-
tivity, and overall heat transfer coefficient, respectively. The lighting
load, occupant density, and air-conditioning setup parameters are listed
in Table 2.

3.2. The effect of the T-RC film in hot summer and cold winter region

Fig. 8 shows the simulation results of the hourly indoor air temper-
atures of base case and the T-RC-film-covered building in cities in hot
summer and cold winter region when the AC systems are assumed to
be not in operation. The peak indoor air temperatures of base case are
49.3 °C, 47.9 °C, 50.5 °C, and 47.2 °C in Hangzhou, Chongqing, Shang-
hai, and Nanjing, respectively. With the application of the T-RC film,
the peak indoor temperatures are 36.2 °C, 36.5 °C, 37.3 °C, and 35.8 °C,
respectively. The maximum temperature differences for the given build-
ing are over 12.3 °C in these four cities. The indoor air temperature
decreases throughout the year due to the significantly low SHGC and
higher emissivity in the atmospheric window. In summer, due to the
high solar radiation intensity, the average cooling effect fluctuates at
around 10 °C in the daytime, while the average cooling effect fluctuates
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at around 4~6 °C at night. It should be noted that the T-RC film still has
cooling effect in winter. Fortunately, the average cooling effect fluctu-
ates at around 4~5 °C in the daytime and 1~2 °C at night, respectively.
The reason is the lower solar irradiation and lower ambient temperature
in winter. Predictably, the cooling load decreases and the heating load
increases with the application of the T-RC film. However, considering
a whole year operation, there’s still considerable energy saving due to
large indoor temperature reduction in summer.

Fig. 9 shows the monthly cumulative AC energy consumption for
the given building in these four cities in hot summer and cold winter
region. Apparently, Fig. 9 shows that the energy consumption by using
T-RC film in winter increase by 95%, 41%, 96%, and 57% in Hangzhou,
Chongqing, Shanghai, and Nanjing, respectively. However, the energy
consumption of base case in winter only accounts for 7.1%, 15.0%, 7.5%
and 17.3% of the annual AC energy consumption, respectively. Accord-
ing to Fig. 9, the cooling energy consumption in summer is significantly
reduced with the application of the T-RC film. Fig. 9 also shows that

the cumulative cooling energy consumption from April to October de-
creased by 64.3%, 60.3%, 67.7%, and 63.2% in Hangzhou, Chongqing,
Shanghai, and Nanjing, respectively. The reduction of cooling energy
consumption in July and August contributed 44%, 51.8%, 45.3%, and
51.5% to the reduction of annual AC energy consumption, respectively.
After coupling the cooling benefit in summer and the heating penalty
in winter, the annual cumulative AC energy consumption in the hot
summer and cold winter cities decreased by 51.8%, 45.0%, 53.3%, and
40.9%, respectively. The results show that the T-RC film exhibits an ex-
cellent performance for energy saving in hot summer and cold winter
region.

Moreover, the peak cooling load significantly reduces (between
43.9% and 51.3%) while the peak heating load increases with the ap-
plication of the T-RC film, as shown in Fig. 10, which indicates that the
T-RC film can reduce not only the operational cost but also the initial
investment of the AC system for the given building.
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3.3. The effect of the T-RC film in hot summer and warm winter region

Fig. 11 shows simulation results of the hourly indoor air tempera-
tures of the base case and the T-RC-film-covered building in cities in hot
summer and warm winter region when the AC systems are assumed to
be not in operation. The peak indoor air temperatures of the base cases
are 42.7~44.4 °C in Fuzhou, Shenzhen, Nanning, and Haikou. While
the maximum temperature differences between the base case and the T-
RC-film-covered building are 9.3~10.1 °C in these four cities. The peak
indoor air temperature and maximum temperature difference in cities
in hot summer and warm winter region are lower than those of hot sum-
mer and cold winter region cities due to the lower insulation level of the
building envelope. Compared to the hot summer and cold winter region
cities, heating is rarely needed for those cities in hot summer and warm
winter region due to higher ambient temperatures in winter, as shown
in Figs. 8 and 11, which is beneficial for energy saving.

Fig. 12 shows the monthly cumulative AC energy consumption for
the given building of the four cities in hot summer and warm winter
region. The cooling energy consumption is significantly reduced with
the application of the T-RC film from March to November in Fuzhou,
Shenzhen, Nanning, and Haikou. Since the latitude of Fuzhou (lati-
tude N 25°52′−26°48′) is relatively high, the heating energy consump-
tion will increase in winter, and the effect of the T-RC film in Fuzhou
is similar to that in cities in the hot summer and cold winter region,

as shown in Fig. 12a). The energy saving can be achieved during the
whole year in Shenzhen (latitude N 22°24′−22°52′) and Haikou (lati-
tude N 19°32′−20°05′), as shown in Figs. 12b) and 12d). Since the ben-
efit from cooling energy reduction is offset by the adverse effect of the
heating energy enhancement, the total AC energy consumption in win-
ter of Nanning is almost equal to the situation of the base case, as shown
in Fig. 12c). After incorporating both the cooling benefit in summer and
the penalty in winter, the annual cumulative AC energy consumption
in hot summer and warm winter cities are reduced by 63.4%, 61.5%,
55.3%, and 58.2%, respectively, which is much better than those cities
in hot summer and cold winter region. Similarly, the peak cooling load
significantly reduces (between 49.8% and 52.7%) while the peak heat-
ing load increases with the application of the T-RC film in hot summer
and warm winter region, as shown in Fig. 13.

4. Conclusions

The selectively high reflectance in solar spectra and selectively high
emissivity in atmospheric window of the T-RC film lead to significantly
energy saving potential when applied on building roof glazing. Here,
two identical model boxes were constructed for comparison study. A
simulation model was built in EnergyPlus and validated by using field-
measured data. After validating the model, an exhibition building model
with roof glazing was established to analyze the annual temperature
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loads in four cities in hot summer and warm winter
region.

changes and annual building’s AC energy saving with the application
of the T-RC film in different regions. The following conclusions can be
drawn.

• When the T-RC film is applied on a 1.0 m × 0.6 m × 1.2 m (L ×W ×H)
model box with roof glazing, the inside air temperature of the model
box was reduced by a maximum value of 21.6 °C.

• In hot summer and cold winter region, the cooling energy consump-
tion reduces in summer and the heating energy consumption in-
creases in winter by applying the T-RC film. However, incorporating
both effects in summer and winter, the annual AC energy saving of
the given building is between 40.9% and 51.8%.

• In hot summer and warm winter region, the heating penalty of the
T-RC film in winter is almost negligible, especially for Shenzhen (lat-
itude N 22°24′−22°52′) and Haikou (latitude N 19°32′−20°05′). The
annual AC energy saving of the given building is between 55.3% and
63.4%.

• With the application of the T-RC film, there is not only a significant
AC energy saving, but also a clear economic prospection by reducing
AC system’s initial and operational cost.
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a b s t r a c t

For the purpose that relieves the suffering of the patients and shortens their hospital stay, it is crucial to design
and manage the environment control systems reasonably to maintain an appropriate indoor thermal environment.
However, all of the current thermal comfort theories are based on a healthy population. There are significant
differences in metabolism and clothing thermal resistance between inpatients and healthy people, which are re-
garded as vital influenced factors on people’s thermal comfort. Therefore, these existing thermal comfort models
may not be applicable for inpatients. In this paper, the patients’ comfort equation was derived by modifying
the metabolism and the clothing thermal resistance based on the thermal comfort model of Professor Fanger,
and the rationality of the model was tested by using field experiment data obtained in general wards. Vali-
dated by t-tests, the value of AMV and PMV calculated by the modified equation is not markedly different on
a 5% significant level for all patients lying on bed in winter. Moreover, the typical comfort diagrams of inpa-
tients were established by solving the thermal comfort equation. The results of this study are intended to assist
in the formulation of useful guidelines to facilitate the assessment and management of hospital ward thermal
environments.

1. Introduction

The issues involved with indoor thermal environment and comfort
are always the focus of HVAC engineers. As we know that appropriate
indoor thermal environments can relieve the suffering of the patients,
shorten the patient’s hospital stay. Current researches are primarily con-
cerned with the thermal comfort of healthy people but less for the pa-
tients. As we know that appropriate indoor thermal environments can
relieve the suffering of the patients, shorten the patient’s hospital stay.
There are differences in thermal comfort demands between patients and
healthy people, and it is necessary to consider the coexistence of pa-
tients, caretakers and medical staff when HVAC engineers design and
manage hospital thermal environments.

Nowadays, there is numerous literature on thermal comfort studies
in hospitals and medical buildings. Some researchers were focused on
studying parameters of hospital environments; some other studies have
been conducted on the thermal response of patients and medical person-
nel. And there has been some literature focused on assessing the effects
of temperature and air humidity changes on hospital air quality and dis-
ease infection [1–3]. Current field studies (shown in Table 1) focused
on the thermal comfort evaluation of patients applied Fanger’s ther-

∗ Corresponding author at: School of Civil Engineering, Chongqing University, Chongqing 400045, China.
E-mail address: hlzhang@cqu.edu.cn (H. Zhang).

mal comfort model admitted by ASHARE 55 standard [42] frequently.
The detailed results of these researches are as followed: Skoog et al.
[4] found that the difference in metabolic rate between patients and
staff made their thermal requirements different. Pourshaghaghy and
Omidvari [5] conducted field experiments in a hospital in the morn-
ing, noon and evening, found out that the females’ thermal sensitivity
was weaker than males’, the range of thermal comfort was more ex-
tensive, and the interviewees preferred cool environment. Hwang et al.
[6] studied the hospital thermal comfort in Taiwan using ASHRAE Stan-
dard 55, but the research did not consider the lying patients. Lee et al.
[7] studied on the rank of thermal comfort in various sites of a hospi-
tal, and pointed out the thermal environment of wards was the best
(PMV=0.44), and the lobby was the worst. In effect, the inpatient’s
health conditions are quite different from healthy people that conduces
to the discrepancy between the metabolism of the former and that of the
latter. Due to the same reason, the suffering alwaysmaintains postures of
lying that result in thermal insulation differences. While Fanger’s com-
fort model posited metabolic rate and clothing insulation as critical fac-
tors in determining the human body’s steady-state heat balance, there-
fore, the conclusions of the literature mentioned above may need to be
refined.

https://doi.org/10.1016/j.enbenv.2020.07.002
Available online 28 July 2020
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Table 1

Field studies on thermal comfort in hospitals.

Authors Region Experiment sites Subjects

Skoog et al. [4]

(2005)

Sweden Orthopaedics wards Patients, staff

Hwang et al. [6]

(2007)

Taiwan Medical and surgical wards Patients

Verheyen et al. [9]

(2011)

Belgium Wards (Maternity, oncology, neurology, gastro-

enterology, abdominal surgery and thoraco-vascular

surgery)

Patients

Pourshaghaghy

et al. [5] (2012)

Iran Wards, urgency, radiology, surgery, laboratory Patients, staff,

visitors

Lee et al. [7]

(2015)

Korea Wards, lobby, offices, restaurant Patients, staff,

visitors

Del Ferraro et al.

[8] (2015)

Italy Wards Patients, staff

Lan et al. [10]

(2017)

Singapore Patient wards Patients, staff

Alotaibi et al. [11]

(2020)

Saudi Arabia Patient wards Patients

Del Ferraro et al. [8] studied on thermal responses of inpatients and
medical staff in the hospital and pointed out that the gender and age
should be considered assessing thermal comfort in the hospital. The
authors also applied test results of Ling and Deng to evaluate the to-
tal thermal insulation of lying inpatients by adding merely the cloth-
ing thermal resistance and thermal resistance of the bedding system
together. Verheyen et al. [9] assessed lying patients’ thermal comfort
using the Lin-Deng’s comfort model in sleeping environments. How-
ever, the model used metabolism of 40 W/m2 (approximately 0.7met)
that were the metabolic rate of healthy people in a sleeping situa-
tion, and total clothing resistance included the addition of bedding sys-
tem and clothing in brief. These researches considered the influence
brought by metabolism and thermal heat resistance, respectively; nev-
ertheless, they both didn’t take the combination of the two factors into
account meanwhile. ISO TS 14415 [46] and ASHARE 55 mentioned
changes in thermophysiology, thermosensation, thermoregulatory re-
sponses and thermal comfort perception when the subjects are the dis-
abled. In addition, ISO TS 14415 [46] also adds to the determination
and interpretation of thermal comfort in the case of people with special
requirements.

These thermal comfort models conventionally utilized were all devel-
oped basing on healthy people, but they may not be directly applicable
to patients occupying in hospital environments. Therefore, It is neces-
sary to study theoretically on a patients’ thermal comfort and establish
a reasonable evaluation model.

In this paper, a comfort equation applicable to inpatients (divided
into seated and lying patient) was derived by conducting reasonable
modifications to Fanger’s comfort equation. PMV and PPD indexes for
assessing the thermal comfort of patients can also be obtained. Further,
in order to provide the usability and convenience for hospital managers
and HVAC engineers, some comfort diagrams were developed through
solving the comfort equation, which can be available to determine neu-
tral thermal environments under typical conditions in summer and win-
ter.

2. Improving model

Reviewed from the documents reported by Fanger [12], Gagge and
Hardy [13], and Gagge and Nishi [14], it can be found that the calcu-
lation for all items of thermal equilibrium equation was based on the
ASHRAE Handbook of Fundamentals [15]. Considering inpatients and
healthy people’s variations in metabolic rate and thermal resistance, this
study based on the classical thermal comfort model introduced some
modifications to meet the inpatient’s actual conditions. The field survey
was conducted in general wards in Chongqing, and the patients’ comfort

equation was validated by applying field subjective and objective test
data.

2.1. Improving comfort equation for seated patients

The thermal exchange of the human body with the ambient environ-
ment is a combination of varieties of heat transfer. Based on this theory,
the body’s energy balance equation can be obtained. The mathematical
description of energy balance for a human body and the various terms of
the thermal equilibrium equation is described explicitly in the ASHRAE
Handbook of Fundamentals [15]. The thermal equilibrium equation for
the human body, per unit nude body surface area, may be written as
follows:

𝑀 −𝑊 = 𝐶 +𝑅 + 𝐸sk + 𝐸𝑟 + 𝑆 (1)

Where M is the metabolic heat production, W/m2,W is the mechan-
ical work accomplished, W/m2; C is the convective heat exchange from
the outside surface of the clothed body to air, W/m2, R is the radiative
heat exchange from the outside surface of the clothed body to surround-
ing, W/m2, Esk is the evaporative heat loss from body skin, W/m2,Er is
the respiratory heat loss, latent and dry, W/m2, and S is the heat storage,
W/m2.

Total evaporative heat loss from the skin Esk divides into two parts,
the heat loss of evaporation due to sweating regulation (Esw) and the
free diffusion of water via skin (Edif). Here the clothing latent thermal
resistance simplified as a set value in the general indoor environment,
ignoring the impact of the normal perspiration on Edif:

𝐸dif = 3.05
(
0.254𝑡sk − 3.335 − 𝑃𝑎

)
(2)

Where Pa and tsk are the water vapor pressure in ambient air and the
skin temperature.

From the thermal equilibrium equation can find that respiration heat
loss (Er), values of tsk and Ersw that provide thermal comfort are all asso-
ciated with the body’s metabolism. Respiratory heat loss, Er, is usually
explicated by dry heat loss of respiration, Cres, and latent heat loss of
respiration, Eres. The values of Eres and Cres are smaller than the other
terms in the thermal equilibrium equation and can be estimated by the
following equations:

𝐸res = 0.0173𝑀
(
5.867 − 𝑃𝑎

)
(3)

𝐶res = 0.0014𝑀
(
34 − 𝑡𝑎

)
(4)

Where t a is the temperature of ambient air.
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The values of tsk andEsw providing thermal comfort for inpatients
are indicated as following [14]:

𝑡sk = 35.7 − 0.0275(𝑀 −𝑊 ) (5)

𝐸sw = 0.42(𝑀 −𝑊 − 58.2) (6)

Therefore, the thermal comfort equation under the steady state
[13]:

(𝑀 −𝑊 ) = 𝐶 +𝑅 + 3.05
[
5.733 − 0.007(𝑀 −𝑊 ) − 𝑃𝑎

]

+0.42(𝑀 −𝑊 − 58.2) + 1.73 × 10−2𝑀
(
5.867 − 𝑃𝑎

)
(7)

+0.00 14𝑀
(
34 − 𝑡𝑎

)

There had been a lot of theoretical researches on patients’ thermal
comfort, and it is worth noting that these studies subjects were patients,
but their metabolic rates without exception used metabolism data of
healthy people recommended in ISO7730 [16]. The metabolic value of
ISO7730 might bring about some false conclusions. Relevant researches
showed that the patient’s metabolic mechanism was significantly differ-
ent from that of healthy people [17, 18]. The metabolic rates of patients
were generally higher than that of healthy people. Surgery, trauma and
infection such as stress often made the body metabolism rate increase
[45]. It is evident that the body metabolic rate is one of the main factors
influencing the heat balance of a human body, then there is a necessity
to modify metabolic rate (M) so as to the heat balance equation to be-
come applicable for patients.

Total energy expenditure (TEE) includes three parts, which are en-
ergy expenditure for physical activity (EEPA), basal energy expenditure
(BEE) and specific dynamic action. BEE is the energy expenditure re-
quired for the maintenance of respiration, body temperature and other
body’s basic metabolic activities. It is closely related to resting energy
expenditure. Due to the difficulty in measuring the value of BEE and it
is almost equal to resting energy expenditure (REE), it can generally use
REE instead of BEE. REE is the energy expenditure which required for
a body to keep resting condition during 24 h. Main measurement meth-
ods of TEE [19, 20] are currently the calorimetric method (including
direct and indirect measuring hot methods), the doubly labeled water
method (DLW), the heart rate monitoring method (HRM). Other meth-
ods, such as motion sensors [21], the method of predictive equations
[22–28] and self-report method [29-30], can also accurately measure
TEE, but the method of motion sensors is not suitable to test inpatients’
TEE. This study adopts the method of predictive equations because there
are many difficulties for other methods to meet their test conditions.

There are many predictive equations for energy estimation of pa-
tients, including Harris-Benedict equation [22], Ireton-Jones equation
[23], Penn State equation (2003) [24], Mifflin equation [25], Schofield
equation [26], Owen equation [27], Swinamer Equation [28] etc. Yu
and Zhang [31] found that Penn State equation (2003), Ireton-Jones
1992 equation can predict patients’ resting energy expenditure more
accurately after comprehensively analyzing these predictive equations
in terms of accuracy and deviation. Penn State equation (2003) in-
cludes two variables, which are the highest temperature during 24 h
and minute ventilation volume, and the two parameters are difficult to
get. The main reason is that measuring the two parameters not only de-
mands special instruments and the support of medical staff but also gets
the permission of patients and their families. Therefore, Ireton-Jones
1992 equation was chosen to predict the patient’s resting energy expen-
diture:

Spontaneous breath ∶ REE = 629 − (11 × AGE) + (25 × 𝐺) − (609 × OB)
(8)

Where REE is the resting energy expenditure, kcal/day, G is the body
weight, kg, AGE is the age of the patient, and OB can be calculated as
follow:

Table 2

Suggested PAL of inpatients.

Physical activity
level

PAL
Male Female

Seated 1.45 1.40

Lying 1.30 1.25

OB =
{
1, BMI > 30

0, else (9)

BMI
(
Body Mass Index

)
= 𝐺∕𝑙2 (10)

Where l is the body height, m.
REE is the daily energy expenditure for a human body, but the

metabolic rate in the thermal comfort equation is heat energy produc-
tion per unit body surface area. Therefore, the metabolic rate of a hu-
man can be obtained, which is the value of REE divided by his body
surface area. The most common measured formula of body surface area
proposed by Du Bois [15] in 1916, it was described as follows:

𝐴𝐷 = 0.202 × 𝑙
0.725 × 𝐺

0.425 (11)

Where AD is the body surface area, m2.
The basal metabolism accounts for about 60 –80% of the daily calo-

rie energy expenditure for one person [20, 32]. It is influenced by the
levels of physical activity and specific dynamic action. TEE is that REE
multiplies by the corresponding physical activity level coefficient (PAL)
(i.e., TEE = REE × PAL ) [33]. Table 2 gives the suggested PAL of in-
patients based on existing documents [33–35]. The general inpatient’s
metabolic rate (M) is that TEE divides by the body surface area (i.e.,
𝑀 = TEE∕𝐴𝐷 ).

Furthermore, the clothing thermal resistance of patients seated in
chairs can be calculated by applying the following equation [36], and if
chairs are cushioned, the additional insulation value of chair (0.15clo)
can be taken into account [37]:

𝑅𝑐 = 0.161 + 0.835 × Σ𝑅clu (12)

Where Rc is the clothing thermal resistance, (m2⋅K) /W, Rclu is the
thermal resistance of clothing, which constitutes garments ensemble,
(m2⋅K) /W, and is valued according to the clothing checklist of the meter
[36].

2.2. Improving comfort equation for lying patients

Thermal comfort model of professor Fanger is generally appropriate
for idle state or near sedentary active states (such as reading or writing).
Patients spend approximately all their time on bed rest in wards, and on
this account, it is necessary to modify this thermal comfort model to
become applicable to patients in bed. The Fanger’s comfort model has
four physical parameters that create the thermal environment (air tem-
perature, mean radiant temperature, air velocity and air humidity) and
two personal factors (activity level, the total resistance of garments).
The main differences between patients’ thermal comfort model and the
health’s are metabolism and thermal resistance of clothing. In considera-
tion of lying patients, it is not enough to only take the thermal resistance
of clothing into account. Lin and Deng deduced a comfort equation in
the sleeping environment by introducing the total resistance Rt which is
affected by quilt, sleepwear, mattress, air velocity, lying posture and the
coverage rate of the human body surface with quilt and bed, etc. [38].
The thermal comfort equation of lying patients can be got by modify-
ing the metabolism based on the Lin-Deng’s comfort model in sleeping
environments [38], which is as follows:
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𝑀 −𝑊 = 1
𝑅𝑇

[(
𝑡sk,req − 𝑡𝑜

)
+ 3.762

(
𝑝sk,𝑠 − 𝑝𝑎

)]
+ 0.0014𝑀

(
34 − 𝑡𝑎

)

+0.0173𝑀
(
5.87 − 𝑝𝑎

)
(13)

Where W is the accomplished mechanical work, about zero at rest
state. RT is the total thermal resistance of a clothed body at different
bedding systems. t sk, req and to are the mean skin temperature required
for comfort and the operative temperature, and can be calculated as
follow:

𝑡sk,req = 35.7 − 0.0275(𝑀 −𝑊 ) (14)

𝑡𝑜 =
ℎ𝑟𝑡𝑟 + ℎ𝑐𝑡𝑎

ℎ𝑟 + ℎ𝑐

(15)

Where 𝑡𝑟 is the temperature of mean radiant, hc and hr are the con-
vective heat transfer coefficient at surface and radiative heat transfer
coefficient.p sk, s is the water vapor pressure in saturated air at tsk.

It is noted that the lying patient’s metabolism should be calculated
based on the mentioned above, but the total thermal resistance of lying
patients cannot only add the clothing thermal resistance and thermal
resistance of the bedding system together. Patients can lie on beds in the
supine position, lateral position or reclining position; the total thermal
resistance will be different under different lying postures even if the
clothing and bedding system is the same. The total thermal resistance
can be theoretically calculated by simplifying the complex heat transfer,
and the following assumptions were made [40].

The heat flow Q from the lying human body to its environment di-
vided into seven parts, which were: Q 1 through the part of the nude skin
surface which contacts directly with quilts; Q 2 to the air layer which
was consisted of the nude skin surface, quilt and mattress; Q 3 through
the bed with mattress; Q 4 directly from the nude skin surface (such as
the head) to ambient air; Q 5 directly from the clothed body to ambi-
ent air; Q 6 to the air space consisted by part of the clothed body, quilt
and mattress; Q 7 through the part of the clothed body, which contacts
closely with quilts. In this study, Pan’s thermal resistance equation was
improved according to real cases of patients. Firstly, human body was
divided into two parts (the upper body and lower body), and the angle
of reclining 𝜑 (angle between upper body and bed) was introduced to
calculate the thermal resistance of all postures, including reclining pos-
ture. Then the percentage of the surface area of each body parts under
supine posture was obtained by McCullough et al.’s research [41]. Thus
the percentage of the surface area of each body segment under different
lying postures was deduced.

Assuming no heat transferred from human body to mattress under
steady-state states [42], therefore the thermal resistance of mattress (R3)
would approach to infinity, the thermal resistance equation for lying
patients is obtained according to the Pan’s study [39]:

𝑅𝑇 = 𝑅𝑇 ,1 +𝑅𝑇 ,2 (16)

1
𝑅𝑇 ,𝑗

=
𝛼1
𝑅1

+
𝛼2
𝑅2

+
𝛼4
𝑅4

+
𝛼5

𝑅𝑐 +𝑅4
+

𝛼6
𝑅𝑐 +𝑅2

+
𝛼7

𝑅𝑐 + 𝑅1
(17)

𝑅𝑏 = 0.03984 ×𝐻fab (18)

𝑅1 = 𝑅𝑏 +
1
ℎ
+ 1

ℎ𝑐

(19)

𝑅2 = 𝑅𝑏 ⋅ sin𝜃 (20)

𝑅4 =
1
ℎ

(21)

ℎ = ℎ𝑐 + ℎ𝑟 (22)

Table 3

Body surface area of body segment relating to each 𝛼
i
for patients shown

as Fig. 3.

𝛼1 + 𝛼2 𝛼4 𝛼5 𝛼6 + 𝛼7

Half-sleeved gowns 6○, 8○, 10○, 11○ 1○, 2○ 3○ 4○, 5○, 7○, 9○
Long-sleeved gowns 8○, 11○ 1○, 2○ 3○ 4○, 5○, 6○, 7○, 9○, 10○

Where R T, 1 and R T, 2 are the total thermal resistance of the upper
and lower body on beds. 𝛼i is the fraction of surface area of the body
segment to the whole body surface area corresponding to Qi.Rb is the
total thermal resistance of the quilt, Hfab is the quilt thickness.h is the
composite heat transfer coefficient. 𝜃 is the angle between the quilt and
the bed.

Pan et al. [39, 40] simplified the bedding system related Q 2 or Q 6
as a triangular air layer which consists of the human body surface, the
mattress and the quilt, then the relation between Aq and Ab is as follow:

𝐴𝑏

𝐴𝑞

= sin𝜃 (23)

Where Aq and Ab are the surface area of the quilt related and human
body related.

Based on the Pan et al.’s study, 𝜃 was approximately taken as 30° for a
patient with a supine position and 60° for a patient with lateral position.
If a patient were lying with a reclining position, 𝜃 would change with
the change of 𝜑, as shown in Fig. 1. When the angle of reclining exceeds
a specific value (𝜑 > 60°), the upper body is usually not covered by a
quilt, and there are only Q 4 and Q 5 existed, and the value of 𝜃 does
not make sense.

In the deductive process of the thermal resistance equation, Pan et al.
[40] assumed that the body’s cross-section was approximately to be a
rectangle and the ratio between width and thickness of the human body
(a: b) was about 3:1. Fig. 2 showed the percentage of surface area for
each body parts in reclining or supine decubitus position obtained ac-
cording toMcCullough et al.’s research, the corresponding data in lateral
decubitus position is also worked out by modifying the data of supine
posture. The percentage of skin surface covered only by quilt (𝛼1 + 𝛼2
), percentage of nude body surface (𝛼 4), percentage of clothed body
surface (𝛼 5) and percentage of clothed body surface covered by quilt
(𝛼6 + 𝛼7 ), all can be obtained by adding percentages of surface area with
corresponding body segments together based on the actually covered
situations. For example, a supine patient who is as shown in Fig. 3, the
body surface area of body segment relating to each 𝛼i can be obtained
based on Table 3.

According to pan’s study [39], the relation between 𝛼 1 and 𝛼 2, 𝛼 6
and 𝛼 7 were as follow:

𝛼7
𝛼6

=
𝛼1
𝛼2

=

{
𝑎

2𝑏 = 3
2 , reclining or supine position
𝑏

2𝑎 = 1
6 , lateral position

(24)

Therefore, no matter what a lying patient is decubital, Eq. (16_–(22)
can calculate theoretically total thermal resistance of the clothed body
at different bedding systems combined with the field test.

2.3. PMV and PPD index

Fanger proposed PMV and PPD index, which can predict the mean
thermal response of people on the basis of the thermal sensation scale
in ASHRAE. Furthermore, the related the values of PMV to the dise-
quilibrium of the practical heat flow of the human body with a given
environment. The heat sensitive coefficient (𝛽) in PMV formula is only
related to the patients’ metabolism. In this study, due to considering the
metabolic difference between healthy people and patients, so the heat
flow satisfying requirement of optimum comfort at a particular activity
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Fig. 1. Relation between the angle of reclining (𝜑) and 𝜃.

Fig. 2. Percentage of surface area for each body parts (excluding part contacted
the mattress 𝛼3).

can be adopted as following [12]:

PMV =
[
0.303 exp (−0.036𝑀) + 0.028

]
𝐿 = 𝛽𝐿 (25)

Where 𝛽 is the sensitivity coefficient. L is the thermal load of the human
body, which is the difference between the left-side and the right-side of
the comfort equation.

PPD = 100 − 95 exp
[
−
(
0.03353PMV4 + 0.2179PMV2)] (26)

In Eq. (25)The patients’ thermal load (L) can be calculated using
Eq. (7) for patients in chairs or Eq. (13) for patients in beds.

3. Model verification

In order to verify the modified models, a series of field studies, which
included the subjective survey and the physical environment parameters

Fig. 3. The quilt coverage of a patient with half-sleeve or long-sleeved gowns
in the supine position.

measurement, had been organized and carried out. Data analysis was
conducted to survey whether the actual thermal senses and acceptability
of inpatients to their thermal environment were significantly different
from the PMV and the PPD calculated by the model in this paper.

3.1. Data collection

The field studies were conducted in wards of 4 general hospitals in
Chongqing from December 2015 to January 2016 (winter) and June
2016 to July 2016 (summer). The central air-conditioning systems were
on during the field experiment periods. The questionnaire was designed
based on the Thermal Environment Survey in ASHRAE Standard 55
[42], including gender, age, height, weight, patient’s thermal sensation
and so on. A total of 370 sets of valid data (120 in winter and 250 in
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Table 4

The number of different weight samples corresponding to different metabolic
ranges.

Weight <=40kg 40–50 kg 50–60 kg 60–70 kg >70 kg

Summer

<35 W/m2 13 21 3 0 0

35<,<50 W/m2 1 59 139 119 29

>50 W/m2 0 0 6 10 12

Winter

<35 W/m2 7 24 4 0 0

35<,<50 W/m2 0 49 102 100 30

>50 W/m2 0 0 2 5 9

Table 5

The number of different age samples corresponding to different
metabolic ranges.

Age <=45 45–55 55–65 65–75 >75

Summer

<35 W/m2 0 4 9 24 0

35<,<50 W/m2 124 112 75 36 0

>50 W/m2 27 1 0 0 0

Winter

<35 W/m2 0 1 13 21 0

35<,<50 W/m2 110 64 78 29 0

>50 W/m2 16 1 0 0 0

summer) were obtained. Tables 4 and 5 list physiologic data of patients
collected in this filed study.

Environmental key parameters were measured, including black bulb
temperature, air temperature, air humidity, air velocity and so on.
Table 6 shows measurement instruments of field test. The measur-
ing equipment was placed in the zone of 1 m around the patients.
Table 6 lists instruments used for measurement of environmental pa-
rameters. For seated patients, the measuring heights were 0.6 m; for
lying patients, 0.2 m higher than bed-level. All the equipment used in
the study meet GBT 50785–2012 in China [43].

3.2. Data analysis

Statistical analysis was conducted utilizing the parameter test (i.e.,
two samples t-test, binomial test). Two sample t-tests were performed
on the thermal senses to reveal whether the thermal senses predicted
vote (PMV) calculated by modified models and actual thermal senses
(AMV) have a significant difference on a 5% level. The binomial test is
performed to determine whether the PPD calculated from Eq. (16) and
PPDT obtained from subjective dissatisfied votes have a significant dif-
ference on a 5% level. The data analysis methods are consistent with
those described in ISO 10551 [44].

Values in Table 7, including mean PMV, STD PMV and PPD were
based on data of inpatients’ PMV values which were calculated using
the method mentioned in this paper based on the objective measure-
ment data. The value of mean AMV, STD AMV calculated from personal
thermal sensation votes and Mean PPDT calculated from personal sub-
jective dissatisfied votes.

Table 7 showed that mean PMV calculated by modified models and
mean AMV for inpatients were almost no significantly different. This
indicated that predicting the patient’s thermal sensation can be made
using the improved inpatient’s thermal comfort model presented in this
paper. Further analysis reveals that the seated patients’ mean subjective
thermal senses were little higher than the predicted mean votes, but the
lying patients’ were little lower than the predicted mean votes. it was
resulted from their difference of health status.

Two-sample t-tests showed that individual AMV and individual PMV
were not significantly different on a 5% level for all inpatients in gen-
eral wards except for seated patients in winter. A second analysis of t-
tests was conducted using the same methods but after rejecting outliers,

which judged by Grubbs’ test on a 5% significance level. The results
remained the same. This indicated that the accuracy of the improved
model was high when applying to evaluate the patients’ thermal com-
fort.

Binomial tests revealed PPD calculated according to Eq. (26). More-
over, PPDT obtained from subjective thermal dissatisfied votes had no
significant difference, which meant that the calculation method for PPD
by Eq. (25) could be used to predict thermal dissatisfied degrees for
inpatients in general wards concluded in this study.

4. Results and discussion

4.1. Comfort diagrams of different metabolic rate, wet bulb temperature,

operative temperature

There are numerous combinations of parameters (such as operative
temperature, relative humidity, patients’ metabolism, the total thermal
resistance and so on) that may satisfy the optimal comfort conditions
for patients in wards. An EXCEL calculation program was developed
to solve the patients’ comfort equation at different combinations of pa-
rameters, and comfort charts were drawn by the software of Origin 9.0.
Comfort charts (Figs. 4–7 ) were established under two typical thermal
resistances of winter and summer, which could be used for determining
thermal neutrality environments under one given patient’s metabolic
rate. The program can also apply to establish more comfort charts for
patients with other thermal resistance values and metabolic rates in fur-
ther study.

Figs. 4–7 illustrate the comfort diagrams were established by the op-
timal combination of wet bulb temperature, operative temperature and
patient’s metabolic rate; under that case thermal neutral environment
can be achieved. Fig. 4 is a comfort chart for the seated patient in win-
ter (the patient’s clothing thermal resistance is 1.1 clo on average), and
Fig. 5 is for the seated patient in summer (the patient’s clothing ther-
mal resistance is 0.6 clo on average). Fig. 6 is a comfort chart for lying
patients in winter (the patient’s total thermal resistance is 2.8 clo on
average) and Fig. 7 is for lying patient in summer (the patient’s total
thermal resistance is 1.9 clo on average). The total thermal resistance
of lying patients is higher than the clothing thermal resistance of seated
patients.

It can be seen from Figs. 4 and 5 that the change of relative
humidity influences operative temperature for a seated patient more
greatly. A change from dry environment to thoroughly moist environ-
ment (RH = 0–100%) can be offset by only 2.4–3.4 °C in winter and 2.2–
2.8 °C in summer (at the range of 40–90 W/m2 metabolic rate) reduc-
tion of operative temperature. The higher the patient’s metabolic rate,
the more the reduction of operative temperature. For example, when
changing relative humidity from 0% to 100% in winter, if the patient’s
metabolic rate is 40W/m2, 3.4 °C decrease of operative temperature will
adequately offset its influence, but 2.7 °C decrease of operative temper-
ature if the metabolic rate is 90 W/m2.

From Figs. 6 and 7, it is easy to see that the change of relative hu-
midity weakly influences the optimal temperature for a lying patient,
which is different from the seated patient. A change from dry environ-
ment to thoroughly moist environment (RH = 0–100%) can be offset
by only 1.1–1.7 °C in winter and 1.5–1.9 °C in summer (at the range of
30–60 W/m2 metabolic rate) decrease of operative temperature. This
analysis means that thermo-neutral temperatures are rarely affected by
relative humidity when the thermal resistances are large enough.

From Figs. 6 and 7, it is observed that the influence of thermal re-
sistance on the thermo-neutral environment for inpatients. For exam-
ple, thermo-neutral temperatures are 28.9 °C and 27.1 °C at the cloth-
ing thermal resistance of 0.6 clo and 1.1 clo respectively for a seated
patient with 40 W/m2 metabolic rate at 60% relative humidity, and
24.8 °C and 20.4 °C at the total thermal resistance of 1.9 clo and 2.8 clo
respectively for a lying patient at the same condition. This result indi-
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Table 6

Measurement instruments of field test.

Instrument Measurement Range Precision Accuracy

KANOMAX thermal

environment tester

(A531)

temperature 0~60 °C ±0.5 °C 0.1 °C

humidity 2~98% 2~80%:±2%
80~98%:±3%

0.1%

air velocity 0.1~30 m/s ±0.15 m/s 0.01 m/s

Black bulb

thermometer

radiant

temperature

−100~+400 °C ±0.3 °C 0.1 °C

Fig. 4. Comfort diagrams for seated patients in winter (1.1clo, air
speed ≤ 0.15 m/s).

Fig. 5. Comfort diagrams for seated patients in summer (0.6clo, air-
speed ≤ 0.15 m/s).

cates a strong negative correlation between thermo-neutral temperature
and total thermal resistance.

4.2. Comfort diagram of different metabolic rates, clo-value and operative

temperature

Fig. 8 is a comfort chart for inpatients when airspeed is not greater
than 0.15 m/s, and relative humidity is 60%. The comfort diagrams
corresponding to different patient’s metabolic rates are curves through
different combinations of clo-value and operative temperature, under

which thermal neutrality can be achieved. The thermo-neutral temper-
ature of inpatients can be obtained from this diagram under a given con-
dition of total thermal resistance and metabolism. For example, a lying
patient is clothed in 1.9 clo and 40 W/m2 metabolic rate. From Fig. 8,
the operative temperature, which provides thermal comfort, is 24.8 °C.
Compared to healthy people in the sleeping environment [38], when the
thermo-neutral temperature 25.3 °C for a person with metabolic rate is
40 W/m2 and 1.9 clo total thermal resistance at 60% relative humidity,
there is 0.5 °C reduction of operative temperature caused by relatively
high patient’s metabolic rate.
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Fig. 6. Comfort diagrams for lying patients in winter (2.8clo, air speed
≤ 0.15 m/s).

Fig. 7. Comfort diagrams for lying patients in summer (1.9clo, air-
speed ≤ 0.15 m/s).

Fig. 8. Relationship between t
o
and the total thermal resistance value

(60% relative humidity and airspeed ≤ 0.15 m/s).

230



H. Zhang, X. Xie, S. Hong et al. Energy and Built Environment 2 (2021) 223–232

T
a
b
le
7

Co
m
pa
ra
tio
n
be
tw
ee
n
ac
tu
al
su
bj
ec
tiv
e
th
er
m
al
re
sp
on
se
sa
nd

ob
je
ct
iv
e
re
su
lts
ca
lc
ul
at
ed
by

pr
ed
ic
te
d
eq
ua
tio
n.

a
5%

si
gn
ifi
ca
nc
e
le
ve
l

N
um

be
ro
f

sa
m
pl
es

M
ea
n
PM

V
M
ea
n
AM

V
ST
D
PM

V
ST
D
AM

V
Di
ffe
re
nc
e

be
tw
ee
n
PM

V
an
d
AM

V
(T
w
o-
sa
m
pl
e

t-t
es
t)

M
ea
n
PP
D

M
ea
n
PP
D T

Di
ffe
re
nc
e

be
tw
ee
n
PP
D

an
d
PP
D T

(B
in
om

ia
lt
es
t)

W
in
te
r

S
e
a
te
d
p
a
ti
e
n
t

2
0

−
0
.0
7

0
.2

0
.1
2

0
.1
7

S
ig
n
ifi
ca

n
t

(p
=

0
.0
2
6
)

9
.2
2

1
0
.1
0

N
o
t
si
g
n
ifi
ca

n
t

(p
=

0
.5
3
8
)

Ly
in
g
p
a
ti
e
n
t

1
0
0

0
.3
5

0
.2
4

0
.2
6

0
.2
1

N
o
t
si
g
n
ifi
ca

n
t

(p
=

0
.0
7
1
)

1
0
.4
7

1
1
.2
0

N
o
t
si
g
n
ifi
ca

n
t

(p
=

0
.6
7
0
)

S
u
m
m
e
r

S
e
a
te
d
p
a
ti
e
n
t

5
0

−
0
.1
1

0
.0
6

0
.1
8

0
.1
0

N
o
t
si
g
n
ifi
ca

n
t

(p
=

0
.0
5
2
)

6
.1
3

8
.8
4

N
o
t
si
g
n
ifi
ca

n
t

(p
=

0
.5
2
1
)

Ly
in
g
p
a
ti
e
n
t

2
0
0

0
.2
5

0
.1
8

0
.3
2

0
.3
4

N
o
t
si
g
n
ifi
ca

n
t

(p
=

0
.0
5
5
)

9
.6
5

1
0
.4
2

N
o
t
si
g
n
ifi
ca

n
t

(p
=

0
.5
5
5
)

N
o
te
:S
TD

=
st
an
da
rd
de
vi
at
io
n.

5. Conclusions

A comfortable thermal environment of wards should meet patients’
thermal comfort, it needs to clear on the patients’ thermal comfort re-
quirements to create the environment. Nowadays, thermal comfort stud-
ies for patients were limited, and there was not yet a document to elabo-
rate on the patients’ thermal comfort theory. The thermal comfort equa-
tion of ASHRAE standard is based on healthy people, and this theory
possibly does not apply for inpatients.

Inpatients are mainly in a state of rest in the ward spending most
of the time lying on the bed in the supine position, lateral position or
reclining position; at the other time, they are sitting in the chair. The
theoretical calculation methods of total thermal resistance were studied
for inpatients in different postures. Usually, the patient’s metabolism
is slightly higher than the health’s. In this paper, improving patients’
thermal comfort model had been obtained by introducing a reasonable
predictive equation of the patient’s metabolism and calculation model
of thermal resistance for patients. Compared to the metabolic rate mea-
surement such as heart rate monitoring and oxygen consumption pre-
sented in ISO 8996 [19], the accuracy of equation evaluation in this
paper might not be enough, some further study is in demand.

Two-sample t-tests show that the value of AMV and PMV is not sig-
nificantly different on a 5% significant level for all individual patients
except for seated patients in winter. Binomial tests reveal PPD calcu-
lated from predicted tools in this study, and PPD obtained from sub-
jective thermal dissatisfied votes have no significant difference. These
mean that the calculation method for PMV and PPD based on this pa-
per can be applied to predict mean thermal senses and the degree of
dissatisfaction for inpatients of general wards.

Based on the comfort equation for patients, comfort charts have been
established under two typical thermal resistances of winter and sum-
mer. The comfort charts can be available to determine thermal neutral
environmental conditions of patients under the given metabolism and
total thermal resistance. Furthermore, if requiring of assessing patients’
thermal comfort, PMV-PPD indexes can be obtained as well by the cal-
culation method of this study.

The results of the study can be applied as the theoretical basis for
establishing criteria on patients’ thermal comfort in hospital wards and
can offer reference to the environmental control system design and man-
agement for general wards.
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